Схемы наглядно демонстрируют показатели моделей и их взаимосвязи. При анализе экономических проблем часто используют позитивный и нормативный анализ. Позитивный анализ дает нам возможность увидеть экономические явления и процессы такими, какие они есть на самом деле: что было или что может быть. Позитивные утверждения не обязательно должны быть верными, но любой спор относительно позитивного утверждения можно решить проверкой фактов. Нормативный анализ основан на исследовании того, что и как должно быть. Нормативное утверждение чаще всего выводится из позитивного, но объективные факты не могут доказать его истинность или ложность. При нормативном анализе выносятся оценки — справедливо или несправедливо, плохо или хорошо, допустимо или недопустимо.
2.2 Методика факторного анализа
Все явления и процессы хозяйственной деятельности предприятий находятся во взаимосвязи и взаимообусловленности. Одни из них непосредственно связаны между собой, другие косвенно. Отсюда важным методологическим вопросом в экономическом анализе является изучение и измерение влияния факторов на величину исследуемых экономических показателей.
Под экономическим факторным анализом понимается постепенный переход от исходной факторной системы к конечной факторной системе, раскрытие полного набора прямых, количественно измеримых факторов, оказывающих влияние на изменение результативного показателя. По характеру взаимосвязи между показателями различают методы детерминированного и стохастического факторного анализа.
Детерминированный факторный анализ представляет собой методику исследования влияния факторов, связь которых с результативным показателем носит функциональный характер.
Основные свойства детерминированного подхода к анализу: построение детерминированной модели путем логического анализа; наличие полной (жесткой) связи между показателями; невозможность разделения результатов влияния одновременно действующих факторов, которые не поддаются объединению в одной модели; изучение взаимосвязей в краткосрочном периоде. Различают четыре типа детерминированных моделей:
Аддитивные модели представляют собой алгебраическую сумму показателей и имеют вид
.
К таким моделям, например, относятся показатели себестоимости во взаимосвязи с элементами затрат на производство и со статьями затрат; показатель объема производства продукции в его взаимосвязи с объемом выпуска отдельных изделий или объема выпуска в отдельных подразделениях.
Мультипликативные модели в обобщенном виде могут быть представлены формулой
.
Примером мультипликативной модели является двухфакторная модель объема реализации
,
где Ч - среднесписочная численность работников;
CB - средняя выработка на одного работника.
Кратные модели:
.
Примером кратной модели служит показатель срока оборачиваемости товаров (в днях) . ТОБ.Т:
,
где ЗТ - средний запас товаров; ОР - однодневный объем реализации.
Смешанные модели представляют собой комбинацию перечисленных выше моделей и могут быть описаны с помощью специальных выражений:
Примерами таких моделей служат показатели затрат на 1 руб. товарной продукции, показатели рентабельности и др.
Для изучения зависимости между показателями и количественного измерения множества факторов, повлиявших на результативный показатель, приведем общие правила преобразования моделей с целью включения новых факторных показателей.
Для детализации обобщающего факторного показателя на его составляющие, которые представляют интерес для аналитических расчетов, используют прием удлинения факторной системы.
Если исходная факторная модель
, а ,
то модель примет вид
.
Для выделения некоторого числа новых факторов и построения необходимых для расчетов факторных показателей применяют прием расширения факторных моделей. При этом числитель и знаменатель умножаются на одно и тоже число:
.
Для построения новых факторных показателей применяют прием сокращения факторных моделей. При использовании данного приема числитель и знаменатель делят на одно и то же число.
.
Детализация факторного анализа во многом определяется числом факторов, влияние которых можно количественные оценить, поэтому большое значение в анализе имеют многофакторные мультипликативные модели. В основе их построения лежат следующие принципы: место каждого фактора в модели должно соответствовать его роли в формировании результативного показателя; модель должна строиться из двухфакторной полной модели путем последовательного расчленения факторов, как правило, качественных, на составляющие; при написании формулы многофакторной модели факторы должны располагаться слева направо в порядке их замены.
Построение факторной модели – первый этап детерминированного анализа. Далее определяют способ оценки влияния факторов.
Способ цепных подстановок заключается в определении ряда промежуточных значений обобщающего показателя путем последовательной замены базисных значений факторов на отчетные. Данный способ основан на элиминировании. Элиминировать – значит устранить, исключить воздействие всех факторов на величину результативного показателя, кроме одного. При этом исходя из того, что все факторы изменяются независимо друг от друга, т.е. сначала изменяется один фактор, а все остальные остаются без изменения. потом изменяются два при неизменности остальных и т.д.
В общем виде применение способа цепных постановок можно описать следующим образом:
где a0, b0, c0 - базисные значения факторов, оказывающих влияние на обобщающий показатель у;
a1 , b1, c1 -фактические значения факторов;
ya, yb, -промежуточные изменениярезультирующего показателя, связанного с изменением факторов а, b, соответственно.
Общее изменение Dу=у1–у0 складывается из суммы изменений результирующего показателя за счет изменения каждого фактора при фиксированных значениях остальных факторов:
Преимущества данного способа: универсальность применения, простота расчетов.
Недостаток метода состоит в том, что, в зависимости от выбранного порядка замены факторов, результаты факторного разложения имеют разные значения. Это связано с тем, что в результате применения этого метода образуется некий неразложимый остаток, который прибавляется к величине влияния последнего фактора. На практике точностью оценки факторов пренебрегают, выдвигая на первый план относительную значимость влияния того или иного фактора. Однако существуют определенные правила, определяющие последовательность подстановки: при наличии в факторной модели количественных и качественных показателей в первую очередь рассматривается изменение количественных факторов; если модель представлена несколькими количественными и качественными показателями, последовательность подстановки определяется путем логического анализа.
Под количественным факторами при анализе понимают те, которые выражают количественную определенность явлений и могут быть получены путем непосредственного учета (количество рабочих, станков, сырья и т.д.).
Качественные факторы определяют внутренние качества, признаки и особенности изучаемых явлений (производительность труда, качество продукции, средняя продолжительность рабочего дня и т.д.).
Способ абсолютных разниц является модификацией способа цепной подстановки. Изменение результативного показателя за счет каждого фактора способом разниц определяется как произведение отклонения изучаемого фактора на базисное или отчетное значение другого фактора в зависимости от выбранной последовательности подстановки:
Способ относительных разниц применяется для измерения влияния факторов на прирост результативного показателя в мультипликативных и смешанных моделях вида у = (а – в) . с. Он используется в случаях, когда исходные данные содержат определенные ранее относительные отклонения факторных показателей в процентах.
Для мультипликативных моделей типа у = а . в . с методика анализа следующая: находят относительное отклонение каждого факторного показателя:
определяют отклонение результативного показателя у за счет каждого фактора
Интегральный метод позволяет избежать недостатков, присущих методу цепной подстановки, и не требует применения приемов по распределению неразложимого остатка по факторам, т.к. в нем действует логарифмический закон перераспределения факторных нагрузок. Интегральный метод позволяет достигнуть полного разложения результативного показателя по факторам и носит универсальный характер, т.е. применим к мультипликативным, кратным и смешанным моделям. Операция вычисления определенного интеграла решается с помощью ПЭВМ и сводится к построению подынтегральных выражений, которые зависят от вида функции или модели факторной системы.