Смекни!
smekni.com

Управление рисками инвестиционных проектов в пищевой промышленности (стр. 15 из 32)

График 2.2.1. Коррекция ценовой тенденции

Первой крайне важной в анализе динамики цен на товарных и финансовых рынках концепцией является принцип ценовой коррекции. Так как развитие тенденции происходит зигзагообразно, то после определенного движения рынка неизменно происходит частичная корректировка, после которой цены возобновляют свое развитие в прежнем направлении. Подобные движения цен в направлении, противоположном господствующей тенденции, можно описать и в какой-то мере предсказать с помощью процентных соотношений. Наиболее известны классические правила коррекции на 33%, 50% и 66% [71] (см. график 2.2.1).

Максимальная коррекция обычно составляет 66%. Именно этот уровень часто является критическим. Если предыдущая тенденция сохраняется, то коррекция составит не более двух третей предшествующего движения цен. Если же возвратное движение цен превышает 66%, то это, скорее всего, уже не коррекция, а перелом тенденции. В таких случаях возвратное движение может превысить 100% от предыдущей тенденции.

Сторонники теории волн Эллиота и коэффициентов Фибоначчи пользуются несколько иными параметрами: 38 и 62% [71]. С учетом подверженности цен практически любых товаров определенным искажающим воздействиям (последствия краткосрочных спекуляций и др.), наиболее эффективным представляется сочетание обоих подходов. В результате следует рассматривать следующие "вилки": минимальная зона коррекции составляет 33–38%%, а максимальная - от 62–66%%.

У. Ганн "дробил" структуру тенденции на восемь частей: 1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8, 8/8. Однако даже У. Ганн указывал на особую важность отношений 3/8 (38%), 4/8 (50%) и 5/8 (62%) для определения длины коррекции. Он также указывал на актуальность разделения тенденции именно на три части: 1/3 (33%) и 2/3 (66%) [71].

Хотя приведенные классические соотношения наблюдаются достаточно часто, особенности движения цен сельскохозяйственных товаров, выражающиеся, прежде всего, в их повышенной изменчивости, обусловливают необходимость проведения более детального исследования рыночных тенденций. Подробнее данный вопрос будет рассмотрен в параграфе 2.3.

Другой важной концепцией является принцип подтверждения и расхождения, который находит применение практически во всех аспектах анализа ценовых рядов. Данный принцип состоит в сравнении различных данных: динамики фьючерсных контрактов на сельскохозяйственные или иные изучаемые товары с разными сроками поставки (месяцами исполнения), сходных рынков, технических сигналов и индикаторов с целью определения, указывают ли они одинаковое направление движения рынка (то есть подтверждают друг друга) или наблюдается расхождение сигналов. Несмотря на то, что понятие расхождения используется в отрицательном смысле, оно является ценным компонентом анализа рынка, заблаговременно сигнализируя о приближающемся переломе тенденции.

В контексте работы с ценовыми моделями под подтверждением понимается сравнение графических моделей анализируемого рынка по всем месяцам исполнения фьючерсных контрактов с целью проверки их соответствия. Например, «бычья» (повышательная) или «медвежья» (понижательная) модель, образовавшаяся на графике фьючерсного контракта с одним месяцем исполнения, должна быть подтверждена соответствующими моделями других месяцев. Однако этим проверка на подтверждение не исчерпывается. Необходимо изучить по тем же критериям все сходные рынки, поскольку группы сходных рынков имеют тенденцию двигаться в одинаковом направлении.

Итак, выше были охарактеризованы общие подходы к комплексному анализу рисков экономического окружения инвестиционных проектов в отраслях пищевой промышленности. С учетом высокой степени неопределенности, присущей рискам экономического окружения, автор считает необходимым одновременное использование рассмотренных концепций и аналитических приемов в целях получения подтверждений сделанным выводам и минимизации вероятности ошибок. Кроме того, эти базовые концепции (принцип ценовой коррекции и принцип схождения и расхождения) лежат в основе построения более сложных и эффективных аналитических методик (в частности, рассмотренной в следующем параграфе).

Высокая зависимость результатов значительного количества проектов от динамики цен на сельскохозяйственную продукцию определяет значимость анализа ценовых рядов, базовые принципы которого, вообще говоря, универсальны и применимы при прогнозировании на любых товарных и финансовых рынках.

Вместе с тем, рынки сельскохозяйственных товаров имеют ряд особенностей, в связи с чем автор считает необходимым использование усложненных аналитических инструментов и методик. К примеру, важнейшим свойством указанных рынков является их ярко выраженная сезонная цикличность при одновременном наличии значительных несезонных колебаний, что проиллюстрировано графиком 2.2.2.

Не меньшую важность при реализации инвестиционных проектов в пищевой промышленности имеет проведение углубленного анализа динамики тонкая линия на графике – цена зерна;

толстая линия – индикатор, характеризующий цикличность цены.

валютного курса (а в ряде случаев курсов нескольких валют) и процентных ставок.

В этой связи первостепенное значение имеет применение процедуры обработки рыночных цен различных существенных для проекта активов, направленной на информационное обеспечение алгоритмов принятия управленческих решений. Такая процедура реализуется в рамках аналитической системы идентификации рыночной ситуации, являющейся, по мнению автора, одним из ключевых элементов комплексной системы управления рисками инвестиционных проектов в отраслях пищевой промышленности.


График 2.2.2. Динамика цен на зерно в 2001 – 2002 гг. (руб. за тонну)


2.3 Методические аспекты построения аналитической системы идентификации рыночной ситуации

Как отмечалось в параграфе 2.2, одним из ключевых элементов комплексной системы управления рисками инвестиционных проектов, реализуемых в отраслях пищевой промышленности, является аналитическая система идентификации рыночной ситуации.

Формально такая система представляет собой процедуру обработки изменяющейся во времени цены актива C(t) (здесь и далее термин «актив» означает анализируемый сельскохозяйственный или иной товар, фьючерс на него и т.п., являющийся объектом торговли), применение которой позволяет выбрать одно из следующих решений [104]:

· Рынок развивается в благоприятном направлении;

· Рынок изменяет направление развития с благоприятного на неблагоприятное;

· Рынок развивается в неблагоприятном направлении;

· Рынок изменяет направление развития с неблагоприятного на благоприятное.

С точки зрения управления рисками, критерием эффективности указанной системы является вероятность правильной идентификации.

В зависимости от задач, решаемых в рамках конкретных проектов, благоприятными могут оказаться диаметрально противоположные сценарии развития рыночной ситуации. Поэтому ниже (для определенности) благоприятной будет считаться повышательная динамика изменения цены актива.

В параграфе 2.2 были рассмотрены существующие методы анализа товарных и финансовых рынков. Однако выполненная автором проверка возможности использования наиболее известных аналитических систем в качестве системы идентификации рыночной ситуации продемонстрировала их недостаточно высокую эффективность. Так, для основных торгуемых зерновых культур вероятность правильной идентификации, полученная по результатам тестирования автором указанных систем, не превышала 0,6 (тестирование выполнено средствами аналитического пакета MetaStock 6.51 Professional for Windows). Видимо, это объясняется спецификой сырьевых рынков, а также резко возросшей в последнее время их волатильностью.

Таким образом, актуальной является задача разработки новой системы идентификации рыночной ситуации, отличающейся более высокой вероятностью правильной идентификации.

Основополагающим свойством всех без исключения товарных и финансовых рынков, не вызывающим полемики среди исследователей, является свойство цикличности [71]. Концепция цикличности утверждает, что цена произвольного рыночного актива C(t) формируется суммой циклов

, i=1, 2, …, отличающихся друг от друга периодами, амплитудами и фазами (см. рис. 2.3.1 и 2.3.2). Изучению цикличности рыночных цен посвящено много исследований (например, Э. Дьюи [128], Дж. Херст [129]), в результате которых, в частности, было установлено, что для прогностических целей реальной ценностью обладают только так называемые доминирующие циклы, описывающие действующие на рынке тенденции (т.е. рыночную ситуацию). При этом в каждый момент времени на большинстве рынков наблюдается пять доминирующих циклов
,
,
,
,
, проявление которых искажается непрогнозируемыми возмущениями. Таким образом, цена C(t) может быть записана в виде

C(t) = S(t) + N(t) , (1)

S(t) =

, где (2)

S(t) – сумма доминирующих циклов;

N(t) – случайные возмущения.