Смекни!
smekni.com

Традиционные методы экономической статистики (стр. 5 из 6)

b. Линейное программирование.

Метод линейного программирования, наиболее распространенный в прикладных экономических исследованиях ввиду его достаточно наглядной интерпретации, позволяет хозяйствующему субъекту дать обоснование наилучшему решению в условиях более или менее жестких ограничений, касающихся доступных для предприятия ресурсов. С помощью линейного программирования в анализе финансово-хозяйственной деятельности решается целый ряд задач, в первую очередь относящихся к процессу планирования деятельности, который он позволяет отыскивать оптимальные параметры выпуска и способы наилучшего использования ресурсов.

Суть метода линейного программирования заключается в поиске максимума или минимума выбранной в соответствии с интересами аналитика целевой функции при имеющихся ограничениях.

Помимо задачи оптимально выпуска, нельзя не упомянуть еще о двух типах задач, которые решаются с помощью метода линейного программирования: это так называемые транспортные задачи и задачи составления расписания.

Метод линейного программированияприменяетсявслучаях, когдазависимостимеждуфакторамилинейныеихарактерихнеменяетсясовременем. Этотметодпредполагаетналичиенесколькихальтернативныхвариантоврешениязадачи, изчислакоторыхиопределяетсялучший (оптимальный). Вобщемвидематематическаямодельоптимизационнойзадачивыглядитследующимобразом:

Решениезадачлинейногопрограммированияосуществляетсяспомощьюсимплексногометода. Приэтомреализуютсяследующиеэтапы:

- составлениематематическоймодели;

- присвоениеэлементаммоделиопределенныхимен;

- составлениематричноймоделиспоименованнымиэлементами;

- вводисходныхданныхвЭВМи (принеобходимости) ихкорректировка;

- решениезадачи;

- экономическийанализполученногорешения.

Спомощьюэтогометодарешаютсязадачиоптимальногораскроя, оптимизациисмесейсырья, оптимальнойзагрузкиоборудования, транспортнаязадачаидр.

c. Метод динамического программирования

Метод динамического программирования(ДП)применяется, когдацелеваяфункцияилисистемаограниченийхарактеризуютсянелинейнымизависимостями, аизучаемыепроцессыразвиваютсявовремени. Методсостоитвтом, чтовместопоискаоптимальногорешениядлявсейзадачи, расчетведетсяпошаговопоотдельнымэлементам (этапам) исходнойзадачи. Приэтомвыбороптимальногорешениянакаждомшагедолженпроизводитсясучетомблагоприятногоиспользованияэтогорешенияприоптимизациинапоследующемшаге. ВыборрешенияприДПосуществляетсянаосноветакназываемогопринцип оптимальности Беллмана. Сутьеговыражаетсявследующем: оптимальнаястратегияобладаеттемисвойством, что, каковыбынебылипервоначальноесостояниеирешение, принятоевначальныймомент, последующиерешениядолжнывестикулучшениюситуацииотносительносостояния, являющегосярезультатомпервоначальногорешения. Оптимальноерешение, найденноеприусловии, чтопредыдущийшагзакончилсяопределеннымобразом, называютусловно-оптимальнымрешением.

d. Анализ чувствительности.

В условиях неопределенности никогда нельзя точно определить заранее, каковы будут фактические значения той или иной величины через определенное время. Однако для успешного планирования производственной деятельности следует предусмотреть и изменения, которые могут произойти в будущих ценах на сырье и конечную продукцию предприятия, на возможное падение или увеличение спроса на товары, производимые предприятием. Для этого выполняется аналитическая процедура, называемая анализом чувствительности.

Анализ чувствительности заключается в определении того, что будет, если один или несколько факторов изменят свою величину. Анализ чувствительности позволяет определить силу реакции результативного фактора на изменение зависимых.

6. Методы финансовых вычислений

Финансовые вычисления, базируются на понятии временной стоимости денег, являются одним из краеугольных элементов финансового анализа и используются в различных его разделах.

a. Временная ценность денег.

Переход к рыночной экономике на предприятиях как реального, так и финансового секторов сопровождается появлением некоторых новых видов деятельности, имеющих для благополучия предприятия принципиальный характер. К их числу относится задача эффективного вложения денежных средств. Можно выделить, как минимум шесть основных моментов:

- Были упразднены многие ограничения, в частности, нормирование оборотных средств, что автоматически исключило один из основных регуляторов величины финансовых ресурсов на предприятии.

- Кардинальным образом изменился порядок исчисления финансовых результатов и распределения прибыли. С введением новых форм собственности стало невозможным изъятие прибыли в бюджет волевым методом, как это делалось в отношении государственных предприятий, благодаря чему у предприятий появились свободные денежные средства.

- Произошла существенная переоценка роли финансовых ресурсов.

- Появились принципиально новые виды финансовых ресурсов, в частности, возросла роль денежных эквивалентов, в управлении которыми временной аспект имеет решающее значение.

- Произошли принципиальные изменения в вариантах инвестиционной политики.

- В условиях свойственной переходному периоду финансовой нестабильности, проявляющейся в устойчиво высоких темпах инфляции и снижении объемов производства, стало невыгодным хранить свои деньги даже в государственном банке. Многие предприятия на своем опыте познали простую истину: в условиях инфляции денежные ресурсы, должны обращаться, и по возможности быстрее.

Таким образом, деньги приобретают еще одну характеристику- временную ценность. Этот параметр можно рассматривать в двух аспектах:

- Связан с обесценением денежной наличности в течением времени;

- Связан с обращением капитала.

b. Операции наращивания и дисконтирования.

Логика построения основных алгоритмов достаточно проста и основана на следующей идее. Простейшим видом финансовой сделки является однократное предоставление в долг некоторой суммы PV с условием, что через некоторое время t будет возвращена большая сумма FV. Как известно, результативность подобной сделки может быть охарактеризована двояко: либо с помощью абсолютного показателя- прироста (FV-PV), либо путем расчета некоторого относительного показателя. Абсолютные показатели чаще всего не подходят для подобной оценки ввиду их несопоставимости а пространственно-временном аспекте. Поэтому пользуются специальных коэффициентом- ставкой.

Процесс, в котором заданы исходная сумма и ставка (процентная или учетная), в финансовых вычислениях называется процессом наращивания, искомая величина - наращенной суммой, а используемая в операции ставка – ставкой наращивания. Процесс, в котором заданы ожидаемая в будущем к получению сумма и ставка, называется процессом дисконтирования, искомая величина - приведенной суммой, а используемая в операции ставка – ставкой дисконтирования. В первом случае идет движении денежного потока от настоящего к будущему, во втором - о движении от будущего к настоящему.

c. Процентные ставки и методы их начисления.

Ссудозаемные операции, составляющие основу коммерческих вычислений, имеют давнюю историю. Именно в этих операциях и проявляется прежде всего необходимость учета временной ценности денег. Несмотря на то, что в основе расчетов при анализе эффективности ссудозаемных операция заложены простейшие на первый взгляд схемы начисления процентов, эти расчеты многообразны ввиду вариабельности условий финансовых контрактов в отношении частоты и способов начисления, а так же вариантов предоставления и погашения ссуд.

Понятие простого и сложного процента.

Предоставляя свои денежные средства в долг, их владелец получает определенный доход в виде процентов, начисляемых по некоторому алгоритму в течение определенного промежутка времени. Поскольку стандартным временным интервалом в финансовых операциях является 1 год, наиболее распространен вариант, когда процентная ставка устанавливается в виде годовой ставки, подразумевающей однократное начисление процентов по истечении года после получения ссуды. Известны две основные схемы дискретного начисления:

- Схема простых процентов;

- Схема сложных процентов.

Схема простых процентов предполагает неизменность базы, с которой происходит начисление.

По схеме сложного процента очередной годовой доход исчисляется не с исходной величины инвестированного капитала, а с общей суммы, включающей также и ранее начисленные и невостребованные инвестором проценты. В этом случае происходит капитализация процентов по мере их начисления, т.е. база, с которой начисляются проценты, все время возрастает.

Таким образом, в случае ежегодного начисления процентов для лица, предоставляющего кредит:

- Более выгодной является схема простых процентов, если срок ссуды менее одного года;

- Более выгодной является схема сложных процентов, если срок ссуды превышает один год;

- Обе схемы дают одинаковые результаты при продолжительности периода 1 год и однократном начислении процентов.

Внутригодовые процентные начисления.

В практике финансовых операций нередко оговаривается не только величина годового процента, но и количество периодов начисления процентов. В этом случае расчет ведется по формуле сложных процентов по подынтервалам и по ставке, равной пропорциональной доле исходной годовой ставки. Одно из характерных свойств наращивания по простым процентам заключается в том, что наращенная сумма не изменяется с увеличением частоты начислений простых процентов.