Смекни!
smekni.com

Статистическое наблюдение (стр. 9 из 14)

Выбор показателя вариации зависит от содержания признака. Наиболее распространенные способы оценки вариаций признаков следующие:

· вариация количественных признаков – показатель среднего линейного отклонения (если размах вариации не превышает 5 % от стандартного уровня) и дисперсия;

· вариация качественных признаков, стандартных по номенклатуре, – коэффициенты вариации, причем предпочтение отдается Vσ;

· вариация качественных стандартизованных признаков, если они планируются, – коэффициент Vi, прочие – дисперсия;

· вариация количественных признаков с высокой долей качества – дисперсия и коэффициенты вариации. Чем более качественный признак, тем более надежный результат будет получен при использовании коэффициентов вариации.

В зависимости от показателя измерения вариации последние могут использоваться для индивидуальной или сравнительной оценки вариации.

Если оценка вариации ограничена дисперсией, то возможна только сравнительная оценка вариации одного признака в разных совокупностях. Однако такая оценка вариации через дисперсию важна, так как позволяет проводить дисперсионный анализ, в процессе которого выделяется вариация признака под влиянием внешних условий.

Если вариация признака оценивается через дисперсию, то кроме сравнительного анализа одного признака допустим такой же анализ разных признаков совокупности. Эти признаки, как правило, имеют одно наименование, но рассчитываются по-разному.

Если вариация признака измеряется коэффициентами вариации, то возможна нормативная оценка вариации признака. В этом случае, расчетный уровень вариации сопоставляется с нормативом.

Область применения показателей вариации. Если среднее линейное отклонение соответствует установленному регламенту (для количественных признаков), то является показателем устойчивостисредней в обычных рядах (не вариационных).

Дисперсия используется двояко: для оценки вариации признака и как инструмент проведения дисперсионного анализа. Как показатель вариации дисперсия используется для измерения колеблемости признаков одного содержания (одной природы). Кроме того, для стандартизованных признаков дисперсия позволяет установить доверительный интервал допустимого (регламентированного) колебания признака.

Дисперсионный анализ позволяет разделять комплексную причину колебания признака на две основные: внутреннюю и внешнюю по отношению к изучаемой совокупности. Способов проведения дисперсионного анализа достаточно много. Наиболее простой одновременно является базисным и основан на использовании балансовой связи между несколькими показателями дисперсии. Последняя может быть представлена в дифференцированном или агрегированном варианте. В основе перехода от агрегированного к дифференцированному описанию связи, когда число слагаемых растет, лежит дробление слагаемых по арифметической схеме (каждое слагаемое является суммой).

Среднее квадратическое отклонение, как и дисперсия, имеет двойное применение:

· как характеристика устойчивости комплексных признаков с высокой долей качества. При этом выполняется сравнительный анализ устойчивости комплексных признаков (однородных по содержанию) в пределах совокупности и однородных совокупностей;

· как расчетная база для получения наиболее надежных коэффициентов вариации Vσ.

Коэффициенты вариации в экономической статистике оценивают в относительном измерении устойчивость признаков и поэтому используются при сравнительном анализе различных признаков, в том числе функционально связанных.

10. Дисперсионный анализ

Виды показателей дисперсии. Процесс группировки позволяет в пределах изучаемой совокупности выделять отдельные ее части по изучаемому признаку или признаку, функционально связанному с ним. Такое разделение возможно при вторичной группировке. Если каждая из выделенных частей не меняет содержания совокупности по данному признаку, то в пределах каждой части могут быть получены частные (внутригрупповые) дисперсии. Тогда дисперсия, определяемая в пределах всей совокупности, будет общей.

Пусть

общая средняя;
– частная (внутригрупповая) средняя; j – порядковый номер части совокупности (ее группы); s2 – общая дисперсия; s2j – внутригрупповая дисперсия; i – порядковый номер значения признака; nj – число единиц в группе. Тогда общая и внутригрупповая дисперсия соответственно

Найденные показатели дисперсии нельзя складывать, так как они разноуровневые (один по совокупности в целом, другой в пределах ее части). Поэтому частные показатели необходимо вывести на уровень совокупности, т.е. найти среднюю из частных дисперсий. Эта дисперсия получила название групповой:


Поскольку

, то для нахождения общей дисперсии через групповую необходимо знать еще одно слагаемое. Им является межгрупповаядисперсия, которая регистрирует изменение признака вследствие колебания внутригрупповых средних по сравнению с общей средней. Межгрупповая дисперсия

Она оценивает колебание признака под воздействием матричных факторов, формирующих внешнюю среду совокупности.

Правило трех сигм. Если общая и внутригрупповые средние являются модулями, то правомерно равенство

Это равенство в статистике получило название «правило трех сигм». Если средние (общая и внутригрупповые) устойчивы, то указанное правило принимается с рядом ограничений. Основное ограничение имеет вид

Кроме того, разность
не должна выходить из интервала от 0,84s2 до 0,98s2. Нижний крайний уровень данного интервала соответствует комплексным признакам с высокой долей качества, верхний – стандартизованным качественным признакам.

Это правило является базисной процедурой для выполнения дисперсионного анализа. Оно может использоваться в явном или дифференцированном виде. Кроме того, существует прямой (от агрегированного варианта к дифференцированному) и обратный (от дифференцированного к более агрегированному) порядок формирования балансового уравнения связи. Минимальное число элементов этой связи – от двух до четырех, максимальное – 12.

В экономической статистике горной промышленности агрегированный вариант включает в себя не более трех слагаемых. Для анализа показателей биржевой деятельности и банковских показателей их число увеличивают до четырех. В дифференцированном варианте дисперсионного анализа число показателей еще больше: для горной промышленности 6; для бирж 10-12; для банков 12.

Число слагаемых не влияет на сложность проведения дисперсионного анализа, важно лишь соблюсти следующие необходимые условия:

· однородность совокупности по изучаемому признаку;

· соответствие числа групп, выделенных в анализируемой совокупности, процессу накопления качества по изучаемому признаку;

· улучшение качественной основы изучаемого признака в пределах выделенных групп.

Схема дисперсионного анализа. Дисперсионный анализ проводится на основе «правила трех сигм» (общая дисперсия равна сумме групповой и межгрупповой). При этом в анализе выделяется два направления. Цель первого – характеристика устойчивости признака с учетом влияния на его колебания внешних признаков; цель второго – оценка надежности средней.

Первое направление дисперсионного анализа предполагает следующие процедуры:

1. Определение доли межгрупповой дисперсии в общей:

Это выражение, вытекающее из «правила трех сигм», без корректировки можно использовать только для количественных признаков. Для качественных признаков эта формула может использоваться, если значение функционального признака выше частного от деления факториальных признаков на 3-5 %. Если это условие не выполняется, то в формулу вводится корректирующий коэффициент Е:

.

2. Установление нормативных пределов степени влияния внешних факторов на колебания изучаемого признака. Нормативные пределы влияния внешних факторов зависят от того, в каких пределах этим влиянием можно пренебречь. Нормативы дифференцированы по содержанию признака и по степени стандартизации признака. Для количественных стандартных признаков нормативы ужесточаются. Для количественных признаков допустимое ограничение γσ от 15 до 18 %; для качественных стандартных признаков: соответственно от 1 до 3 %; для количественных с высокой долей качества и одновременно стандартизованных признаков: 5-8 %.

3. Характер стандартности признака.

Второе направление дисперсионного анализа устанавливает связь между структурой общей дисперсии и соотношением моды и медианы. Принято считать, что средняя является модулем, если отношение моды к медиане больше единицы, но не более чем на 3-8 %. Это условие является вторичным и учитывается, если γσ ≤ 2¸3 %. Для устойчивой средней отношение моды к медиане больше единицы на 7-12 %, γσ ≤ 7¸8 %.