Смекни!
smekni.com

Статистическое наблюдение (стр. 2 из 14)

· Выявление внутреннего строения или структуры типа, класса, однокачественной группы.

· Установление связей и зависимостей между явлениями и их признаками внутри изучаемой совокупности, а также выявление факторов развития явлений. Решение данной задачи возможно как при заранее известном характере связи между наблюдаемыми признаками, так и при неопределенности связи.

Группировка выполняется в несколько стадий. На первой важно отобрать группировочный признак. Им должен быть существенный признак из числа заданных. Если в числе заданных есть атрибутивный признак, то именно он становится группировочным признаком. Если группировочных признаков несколько (если признаки атрибутивные, их должно быть не меньше двух), группировка выполняется в несколько стадий.

Группировку по первому признаку называют первичной, а группировку по всем другим признакам – вторичной.

Группировка проводится или по одному или по нескольким взаимосвязанным признакам. Во втором случае выполняется процедура расчета функционального признака по заданным факториальным. Этот функциональный признак будет играть роль группировочного. Группировка должна осуществляться после выполнения сводки, которая, и это следует помнить, возможна только по количественным объемным признакам. Качественные признаки не подлежат сводке (качественный признак всегда есть результат деления объемного или количественного признака на другой объемный признак или на собственную базу).

Результат сводки – вертикальный столбец цифр, записанных беспорядочно. Он замкнут границами уровня выполнения сводки. Для выполнения группировки этот материал должен быть упорядочен (записан в нарастающем или убывающем порядке). Нарастание или убывание определяется тенденцией изменения данного признака (например, себестоимость снижается, производительность труда увеличивается). Такой ряд чисел называется вариационным. Его элементы – числа (уровни ряда). Ряды бывают дискретными(уровень задан одним числом) и интервальными. Дискретные ряды являются исходным материалом выполнения группировки, а интервальные – ее результатом.

3. Ряды распределения

Группировка, содержащая всего два элемента: перечень групп и число единиц, входящих в каждую группу, – называется рядом распределения. Соответственно ряды распределения чаще всего являются результатом группировки.

Ряды распределения бывают первичными и вторичными. К первичнымотносятся упорядоченные (или вариационные) ряды по данным статистического наблюдения. Эти ряды характеризуются дискретной записью уровней и небольшими частотами (часто они равны единице). Вторичныеряды обязательно являются результатом группировки по количественному признаку. Эти ряды могут быть интервальными и смешанными. У интервальных рядов уровень ряда – интервал, у смешанных – интервалы чередуются с дискретным значением уровня. Частоты таких рядов распределяются по уровням неравномерно. Характер распределения частот определяет качество группировки, ее надежность.

Для вторичных рядов кроме частот определяются частости, т.е. частоты, выраженные в долях или процентах к объему ряда (сумме единиц ряда). Интервальные вторичные ряды могут иметь равные или неравные интервалы.

Интервальные ряды распределения – это непосредственный результат группировки, так как каждый интервал цифр в нем – это объем признака, характеризующий определенный объем качества.

Интервальный ряд распределения характеризуют следующие элементы:

· уровни ряда (варианты) – интервальные значения признака;

· частота – число единиц совокупности, соответствующее данному уровню;

· частость – частота в относительном измерении, т.е. частота, отнесенная к объему ряда, где объем ряда – число единиц изучаемой совокупности. Сумма всех частостей равна соответственно единице или 100 %. Равномерность распределения признака в исследуемой совокупности определяется значениями частот или частостей;

· плотность распределения признака – удельная частота в пределах интервала; отношение частоты (частости) к величине интервала. Необходимость в расчете этого показателя возникает в рядах с неравными интервалами, так как колебания объемов признака по уровням качества как правило не характеризуется пропорциональной зависимостью.

Формирование равных интервалов предполагает достаточно однородную совокупность по изучаемому признаку с медленным нарастанием или убыванием последнего. Во всех остальных случаях формируются неравные интервалы.

Независимо от величины интервала группировку начинают с выделения равных интервалов, а затем переходят к неравным.

Построение ряда с равными интервалами предполагает наличие вариационного ряда по группировочному признаку. Построение искомого ряда включает следующие операции:

· определение размаха ряда – разности между крайними значениями ряда ХmaxXmin;

· обоснование числа групп вторичного ряда распределения n, которое зависит от объема выборки. Эта зависимость имеет опытно-статистический характер, применяется в зависимости от сферы изучаемого явления и декларируется специальными статистическими таблицами;

· определение величины интервала

;

· построение интервалов прибавлением к минимальному значению признака

: Xmin + Di = X1. Таким образом, последовательно получаем интервалы [XminX1], [X1X2] = [X1 – (X1 + Di)] и т.д., пока не придем к максимальному значению признака.

Параметры ряда i и n взаимосвязаны: чем больше длина интервала, тем меньше интервалов. Число интервалов зависит от объема выборки, размаха и некоторых других характеристик ряда. В зависимости от объема выборки N можно принимать следующее число интервалов n:

N До 10 До 10-30 30-100 100-500 500-3000 Более 3000
n 3 3-4 4-8 8-9 9-13 13-18

Построение интервального ряда завершается распределением единиц совокупности по выделенным интервалам.

После того, как найдены частоты интервального ряда, строится их график, причем по оси абсцисс откладывают интервальные значения признака, а по оси ординат – частоты. Если полученный график близок к прямой или параболе, группировку можно заканчивать, она качественна. Для рядов с неравными интервалами данный график будет точнее, если вместо частот использовать плотность распределения.

Построению рядов с неравными интервалами предшествует анализ динамики признака по совокупности и регистрация моментов накопления объема признака. Совмещение этих двух направлений анализа сопровождается обычно вторичной группировкой. При первичной группировке этот процесс возможен только путем построения интервального ряда с равными интервалами.

Таким образом, процедура первичной группировки выглядит следующим образом:

1. Формируется ряд (с равными интервалами) на базе ряда распределения.

2. Выполняется графическая проверка полученного результата. График строится следующим образом: по оси абсцисс откладывают интервалы ряда с регистрацией их средних, по оси ординат – частоты (частости). Точки графика получают на пересечении срединных значений уровней ряда и соответствующих ординат.

3. Проводится анализ полученного графика посредством построения линии тренда. Если линия тренда представляет собой прямую линию или параболическую кривую (второго порядка), то полученные результаты являются достаточно надежными (качественными) и группировку можно закончить. Если линия тренда представлена гиперболической или синусоидальной кривой, то результаты группировки нельзя признать надежными и процедуру следует продолжить. Как правило, последующие стадии группировки заканчиваются построением рядов с неравными интервалами.

4. Осуществляется процедура проверки рядов с неравными интервалами:

1) по исходным данным определяется плотность распределения признака в пределах интервала по единицам совокупности;

2) строится график, в котором по оси абсцисс откладывают интервалы ряда с регистрацией середины; по оси ординат – плотность распределения;

3) проводится анализ полученного результата.

Кроме того, результатами группировки могут быть смешанные ряды, когда одни уровни представлены интервальными значениями, а другие – дискретными (геостатистика, гидрометеорологические исследования).

4. Графическое изображение рядов распределения

Любой ряд распределения может быть представлен в виде статистического графика. При этом по оси ординат показываются частоты (частости, плотности распределения), по оси абсцисс – значения признаков.

Построение статистических графиков отличается от построения математических рядом особенностей:

1. Для большей наглядности допускаются разные масштабы по осям координат.

2. Статистические графики могут быть уровневыми и интегральными. Уровневые замыкаются числом или пределами частот, что позволяет комплектовать уровневые статистические графики взаимосвязанных показателей на одном листе.

3. Статистические графики могут строиться как в абсолютном, так и в относительном измерении (по признаку). Последние предпочтительнее для функциональных признаков.

4. Интегральные статистические графики предполагают суммирование не только значений признака, но и частот. При этом возможно полное суммирование последних или их суммирование в ограниченных пределах (интервалах).

5. Статистические графики в зависимости от цели исследований читаются слева направо (прямой порядок) и справа налево (обратный порядок).