Смекни!
smekni.com

Статистическое наблюдение (стр. 13 из 14)

Индекс структурных сдвигов, несмотря на необычность его записи, не нарушает записи общего индекса: делимое (числитель) – средняя себестоимость базисного периода при фактической структуре выпуска продукции; делитель (знаменатель) – та же средняя, но при базовой структуре выпуска продукции. Таким образом, этот индекс регистрирует изменение себестоимости вследствие изменений в структуре производства.

Кроме содержательных различий агрегатных индексов, различны и их функции: индекс фиксированного состава регистрирует изменение себестоимости под влиянием внутренних факторов, индекс структурных сдвигов – под влиянием внешних факторов.

В конкретной практике классическая форма индекса фиксированного состава не всегда возможна (например, при расчете индекса цен). В таких случаях используют специальные приемы формирования таких индексов, в основе которых лежит модуль индекса Струмилина.

Абсолютные разности. Абсолютные разности всегда определяются только по количественным признакам. Это требование статистики является исходным для анализа абсолютных разностей любой системы взаимосвязанных индексов. В рассматриваемом случае количественным признаком однородного содержания с изучаемым является сумма производственных затрат (издержки производства). Обозначим ее С. Тогда

С = сiqi,

где сi – cебестоимость продукции у единицы совокупности; qi – объем продукции у каждой из единиц изучаемой совокупности.

Абсолютная разность сложного количественного признака (в данном случае производственных затрат) определяется как разность числителя и знаменателя его общего индекса:

где DС – абсолютная разность производственных затрат; с1 и с0 – индивидуальные значения себестоимости у единиц изучаемой совокупности в отчетном и базисном периодах соответственно; q1 и q0 – объемы производства по единицам совокупности в отчетном и базисном периодах соответственно.

Если вместо индивидуальных значений себестоимости использовать среднюю себестоимость

то формула для расчета производственных затрат примет вид

Следовательно, изменение производственных затрат можно рассматривать в зависимости от колебаний фактических значений средней от плановых себестоимости и объемов производства в целом по изучаемой совокупности. Иначе говоря, абсолютная разность производственных затрат может быть представлена как сумма


где ΔСSq и

– абсолютные разности производственных затрат вследствие изменений объема производства и средней себестоимости соответственно.

В свою очередь, первое слагаемое, которое регистрирует изменение производственных затрат под влиянием объема производства, в развернутом виде может быть записано следующим образом:

Второе слагаемое, характеризующее изменение производственных затрат из-за колебаний средней себестоимости, может быть выражено так:

Это общая запись абсолютной разности сложного признака (производственных затрат), в состав которого входит изучаемый качественный признак (себестоимость); ее можно дифференцировать, используя формулы агрегатных индексов, выступающих как структурные элементы индекса переменного состава: индекса фиксированного состава

и индекса структурных сдвигов
.

В дифференцированной записи

Запишем слагаемые в развернутом виде:


Таким образом, первое слагаемое

является разностью между числителем и знаменателем индекса фиксированного состава, а составляющая
– соответственно разностью делимого и делителя индекса структурных сдвигов, умноженной на суммарный объем производства в отчетном периоде.

Из стоимостных качественных показателей только себестоимость позволяет сформировать индекс фиксированного состава. Все остальные стоимостные показатели для выполнения индексного анализа требуют применения индексов Струмилина.

Особенности построения общих индексов качества обратным методом. Рассмотрим эти особенности на примере индекса производительности труда. Введем следующие обозначения: р – производительность труда; Q – объем производства; N – численность работников (затраты живого труда). Тогда

.

Процедура построения индекса переменного состава прямым методом аналогична рассмотренной выше процедуре формирования этого индекса для себестоимости:

· сначала записываем индекс переменного состава (индекс средней производительности труда) в общем виде:

· затем путем перестановки сомножителей и делением второго на дробь

получаем развернутую запись индекса переменного состава:

,

где

– индекс фиксированного состава производительности труда;
– индекс структурных сдвигов этого показателя,

.

Анализ с использованием индексов качества подразумевает две стадии: индексный анализ и анализ через абсолютные разности.

Порядок выполнения анализа на базе абсолютных разностей рассмотрен выше для показателя себестоимости. При первом методе определения производительности этот порядок сохраняется. Вначале выбирается сложный количественный признак, в состав которого входит изучаемый (производительность труда). Таким признаком является объем производства

.

Выразим объем производства через среднюю производительность труда

и суммарные затраты живого труда (численность работников в целом по изучаемой совокупности SN).

Абсолютная разность объема производства в общем виде

где

Величина

может быть записана в более конкретном виде с учетом влияния факторов, вызывающих изменение средней производительности труда:

Первое слагаемое этой суммы определяется как разность числителя и знаменателя индекса фиксированного состава

, второе – соответственно как разность делимого и делителя индекса структурных сдвигов
, умноженная на суммарную численность в отчетном периоде:

Кроме прямого способа расчета показателя производительности труда, существует обратный (через трудоемкость):

где t – трудоемкость работ. Отсюда
т.е. индивидуальный индекс производительности труда через трудоемкость является зеркальным отражением индивидуального индекса этого показателя при прямом способе его расчета
. С учетом этой зависимости запись процедуры формирования общего индекса производительности труда обратным способом и выделения его составляющих (индексов фиксированного состава и структуры) выглядит следующим образом:

.

Анализ записи формулы позволяет выделить два основных момента обратного порядка регистрации общего индекса качества и его составляющих: