Задача 1
Провести структурно-аналитическую группировку 20 регионов страны (см. табл.3) по двум признакам-факторам, положив в основание группировки нижеуказанный для конкретного варианта признак. Рассчитайте среднее значение группировочного признака по каждой группе. Результаты отобразить в статистической таблице, оформленной в соответствии с установленными правилами.
Постройте графически полученный ряд распределения признака в виде гистограммы.
По результатам группировки определите:
- показатели центра распределения: средние арифметическое значение группировочного признака моду и медиану;
- показатели вариации признака:
- абсолютные показатели: размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, дисперсия.
- относительные показатели: коэффициенты осцилляции, вариации и линейной вариации;
- сделайте вывод о форме распределения на основании расчета коэффициентов асимметрии и эксцесса.
По результатам расчетов сделать вывод.
Таблица 1
Вариант | Регион |
3 | с 10 по 29 |
Выбор группировочного признака осуществляется по следующей схеме, представленной в таблице 2.
Таблица 2
Вариант | Группировочный признак |
с 1 по 4 | «ВРП» |
Регион | ВВП, млн.руб. | Потребительские расходы, млн.руб. | Государственные расходы, млн.руб. | Валовые инвестиции, млн.руб. | Экспорт, млн.руб. | Средняя зп, руб. |
10 | 36,6 | 18,3 | 3,7 | 6,6 | 8,4 | 2150 |
11 | 39,2 | 19,6 | 3,9 | 7,1 | 9,0 | 2300 |
12 | 41,8 | 20,9 | 4,2 | 7,5 | 9,6 | 2450 |
13 | 44,4 | 22,2 | 4,4 | 8,0 | 10,2 | 2600 |
14 | 66,0 | 33,0 | 6,6 | 11,9 | 15,2 | 2750 |
15 | 68,6 | 34,3 | 6,9 | 12,3 | 15,8 | 2900 |
16 | 71,2 | 35,6 | 7,1 | 12,8 | 16,4 | 3050 |
17 | 73,8 | 36,9 | 7,4 | 13,3 | 17,0 | 1900 |
18 | 35,0 | 17,5 | 3,5 | 6,3 | 8,1 | 2050 |
19 | 37,6 | 18,8 | 3,8 | 6,8 | 8,6 | 2200 |
20 | 40,2 | 20,1 | 4,0 | 7,2 | 9,2 | 2350 |
21 | 42,8 | 21,4 | 4,3 | 7,7 | 9,8 | 2500 |
22 | 55,0 | 27,5 | 5,5 | 9,9 | 12,7 | 2650 |
23 | 57,6 | 28,8 | 5,8 | 10,4 | 13,2 | 2360 |
24 | 60,2 | 30,1 | 6,0 | 10,8 | 13,8 | 2510 |
25 | 60,0 | 30,0 | 6,0 | 10,8 | 13,8 | 2660 |
26 | 62,6 | 31,3 | 6,3 | 11,3 | 14,4 | 2810 |
27 | 65,2 | 32,6 | 6,5 | 11,7 | 15,0 | 2960 |
28 | 67,8 | 33,9 | 6,8 | 12,2 | 15,6 | 2000 |
29 | 70,4 | 35,2 | 7,0 | 12,7 | 16,2 | 2150 |
РЕШЕНИЕ
Группировка - это разбиение совокупности на группы, однородные по какому-либо признаку. Метод группировок основывается на 2-х категориях: группировочный признак и интервал. Группировочный признак - это признак, по которому происходит объединение отдельных единиц совокупности в однородные группы. Интервал - очерчивает количественные границы групп.
Величину интервала в данной задаче можно определить следующим образом:
(1)х max, xmin - максимальное и минимальное значение варьирующего признака. Для нахождения числа групп служит формула Стерджесса:
(2)1. Сначала определим количество групп (2):
где N - количество элементов совокупности. N =20
=5,32, значит групп 51. Определим длину интервала по формуле (1):
=7,76 млн.руб.Величина интервала 7,76 млн.руб.
35,0 – 42,76; 42,76-50,52; 50,52 – 58,28; 58,28 – 66,04; 66,04 – 73,8
Таблица 4
№ группы | Группировка по ВВП | № региона | ВВП, млн.руб. |
I | 35,0 – 42,76 | 18 | 35,0 |
10 | 36,6 | ||
19 | 37,6 | ||
11 | 39,2 | ||
20 | 40,2 | ||
12 | 41,8 | ||
II | 42,76-50,52 | 21 | 42,8 |
13 | 44,4 | ||
III | 50,52 – 58,28 | 22 | 55,0 |
23 | 57,6 | ||
IV | 58,28 – 66,04 | 14 | 66,0 |
27 | 65,2 | ||
25 | 60,0 | ||
24 | 60,2 | ||
26 | 62,6 | ||
28 | 67,8 | ||
15 | 68,6 | ||
V | 66,04 – 73,8 | 16 | 71,2 |
17 | 73,8 | ||
29 | 70,4 |
При построении вариационного ряда все расчеты отражаем в таблице.
Таблица 5
Инвестиции в основные фонды | Числорегионов, | Серединаинтервала, | |||
35,0 – 42,76 | 6 | 38,88 | 233,28 | 251241,53 | 5024830,6 |
42,76-50,52 | 2 | 46,64 | 93,28 | 243522,51 | 4870450,2 |
50,52 – 58,28 | 2 | 54,4 | 108,8 | 235923,91 | 4718478,2 |
58,28 – 66,04 | 7 | 62,16 | 435,12 | 228445,76 | 4568915,2 |
66,04 – 73,8 | 3 | 69,92 | 209,76 | 221088,04 | 4421760,8 |
Итого | 20 | 272 | 1080,24 | 1180222 | 23604435 |
Средняя величина - выражает величину признака, отнесенную к единице совокупности.
- средняя арифметическая взвешенная
- средняя арифметическая простая
где Xi - варианта (значение) осредняемого признака или серединное значение интервала, в котором измеряется варианта;
n- число наблюдение;
fi - частота, показывающая, сколько раз встречается i-e значение осредняемого признака.
Показатели вариации:
- размах вариации:
,где хmax- максимальное значение признака,
х min– минимальное значение признака;
R=73,8-35,0=38,8
- среднее линейное отклонение:
-
,где
– индивидуальные значения признака, – средняя величина,f– частота;
d=272-540,12=268,12
- дисперсия:
;- среднее квадратическое отклонение:
;- коэффициент вариации:
.Коэффициент вариации показывает степень однородности совокупности. Так как V > 33% - совокупность неоднородна.
- коэффициент осцилляции:
V=38,8/540,12*100%=7,18
- линейный коэффициент вариации:
V=268,12/540,12*100%=49,64
2. Производим группировку по второму признаку: Валовые инвестиции, млн.руб.
Величина интервала:
h= у max - у min /число групп
у max, у min - максимальное и минимальное значение варьирующего признака
Для нахождения числа групп служит формула Стерджесса
1. Сначала определим количество групп:
где N - количество элементов совокупности. N =20
=5,32,значит групп 5
1. Определим длину интервала по формуле (1):
h=13,3-6,3/5=1,4 млн.руб.
Величина интервала 1,4 млн.руб.
6,3 – 7,7; 7,7-9,1; 9,1 – 10,5; 10,5 – 11,9; 11,9 – 13,3
Таблица 6
№ группы | Группировка по Валовым инвестициям, млн.руб | № региона | Валовые инвестиции, млн.руб |
I | 6,3 – 7,7 | 12 | 7,5 |
18 | 6,3 | ||
10 | 6,6 | ||
19 | 6,8 | ||
11 | 7,1 | ||
20 | 7,2 | ||
II | 7,7-9,1 | 21 | 7,7 |
13 | 8,0 | ||
III | 9,1 – 10,5 | 22 | 9,9 |
23 | 10,4 | ||
IV | 10,5 – 11,9 | 14 | 11,9 |
27 | 11,7 | ||
25 | 10,8 | ||
24 | 10,8 | ||
26 | 11,3 | ||
V | 11,9 – 13,3 | 28 | 12,2 |
16 | 12,8 | ||
17 | 13,3 | ||
29 | 12,7 | ||
15 | 12,3 |
При построении вариационного ряда все расчеты отражаем в таблице.
Таблица 7
Валовые инвестиции, млн.руб | Числорегионов, | Серединаинтервала, | |||
6,3 – 7,7 | 6 | 7,0 | 43 | 8,5264 | 51 |
7,7-9,1 | 2 | 8,4 | 16,8 | 2,31 | 4,62 |
9,1 – 10,5 | 2 | 8,8 | 19,6 | 1,2544 | 2,5 |
10,5 – 11,9 | 5 | 11,2 | 56 | 1,6384 | 8,2 |
11,9 – 13,3 | 5 | 12,6 | 63 | 7,1824 | 35,9 |
Итого | 20 | 60,6 | 198,4 | 20,9116 | 102,22 |
Средняя величина - выражает величину признака, отнесенную к единице совокупности.