Смекни!
smekni.com

Статистические методы анализа качества (стр. 7 из 9)

• верхний предел допуска 25.35;

• нижний предел допуска 25.25.

Первичное представление результатов: таблица, содержащая массив данных, полученных в результате измерения 70 обработанных деталей.

Результаты замеров:

25.297 25.300 25.279 25.282 25.294 25.300 25.301 25.304 25.282 25.292 25.292 25.298 25.294 25.300 25.284 25.290 25.285 25.290 25.284 25.290 25.286 25.292 25.288 25.296 25.290 25.300 25.298 25.303 25.292 25.300 25.289 25.300 25.282 25.288 25.290 25.294 25.287 25.292 25.283 25.288 25.290 25.294 25.280 25.288 25.279 25.282 25.300 25.301 25.274 25.285 25.290 25.280 25.292 25.294 25.300 25.290 25.296 25.280 25.283 25.278 25.288 25.280 25.288 25.284 25.296 25.280 25.290 25.288 25.302 25.284

n=70; max= 25.304; min = 25.274; R=0.03.

Вторичное представление результатов: интервальная таблица частот (в верхней строке указаны левые границы интервалов, в нижней строке - количество деталей, диаметр которых попадает в данный интервал):

25.272 25.276 25.280 25.284 25.288 25.292 25.296 25.300 25.304 25.308
0 2 11 9 9 15 9 12 3 0

Расчет статистических характеристик процесса:

х = 25.2902; σ = 0.0073; поле рассеяния' 0.0469. Контрольная Х-карта: см. рис. 4.1.3: НКГ = 25.268; ВКГ = 25.312.

Расчет индексов воспроизводимости: Ср=2.13.

Поле рассеяния значений согласно СТП 37.101.9504 3-96 принимается равным w = k x s,

где х, - результат измерений. s - стандартное отклонение.

k - поправочный коэффициент зависящий от объема выборки причем его величина такова, что поле рассеяния оказывается в большинстве случаев несколько шире, чем 6s

Анализ экспериментального и расчетного материала:

• контрольная х-карта диаметра обработанных деталей, расположение гистограммы показывают, что процесс статистически управляем; это же подтверждает и значение индекса воспроизводимости Ср =2.13, свидетельствующее о практическом отсутствии несоответствий при обработке продукции;

• контрольная х-карта и расположение гистограммы относительно поля допуска показывают, что процесс смещен от центра поля допуска в направлении нижнего предела допуска, следовательно, есть возможность улучшения процесса с помощью смещения наладки на 0.0098 к середине поля допуска.

Выводы: вероятный брак равен 0%; технологическая точность обеспечивается; требуется смещение наладки, равное 0.0098.

Заключение: станок в работу утверждается с условием подналадки. Примечание. Так как контрольная карта не показывает критической ситуации, можно обойтись без подналадки. Содержательный анализ технологического процесса показывает, что в результате износа инструмента произойдет требуемая коррекция размера.

Пример 4.1.2. Производится контроль технологической точности станка с целью аудита.

Тип станка: специальный круглошлифовальный однокамневый станок (фирмы TOYOТA).

Вид обработки детали: обработка внешних диаметров шатунных шеек коленвала (модель 2108).

Эскиз, поясняющий схему обработки: см. рис.4.1.4.

Особенности протекания технологического процесса с точки зрения особых причин: стабильный участок работы.

Конкретные числовые характеристики технологического процесса (по спецификации):

• ход (шатунной шейки коленвала) 71 мм;

• допуск на обработку 0.15 мм;

• верхний предел допуска 71.05;

• нижний предел допуска 70.90.

Первичное представление результатов: таблица, содержащая общий массив данных, полученных в результате 80 замеров четырех шатунных шеек по параметру хода.

Результаты замеров:

70.900 70.900 70.880 70.880 70.900 70.900 70.870 70.880 70.900 70.880

70.880 70.900 70.890 70.870 70.900 70.910 70.890 70.880 70.880 70.900

70.940 70.930 70.900 70.930 70.900 70.890 70.900 70.940 70.950 70.930

70.900 70.930 70.940 70.900 70.930 70.940 70.920 70.900 70.910 70.930

70.950 70.960 70.930 70.940 70.940 70.930 70.940 70.930 70.980 70.960

70.930 70.950 70.970 70.940 70.960 70.940 70.930 70.940 70.930 70.970

70.960 70.920 70.890 70.910 70.910 70.920 70.910 70.900 70.870 70.890

70.870 70.910 70.900 70.890 70.920 70.930 70.900 70.900 70.890 70.940

n=80; max= 70.98; min = 70.87; R=0.11

Вторичное представление результатов: интервальная таблица частот (в верхней строке указаны левые границы интервалов, в нижней строке - количество измеренных значений, попадающих в данный интервал):

70.860 70.870 70.880 70.890 70.900 70.910 70.920
0 4 7 7 18 6 4
70.930 70.940 70.950 70.960 70.970 70.980 70.990
13 11 3 4 2 1 0

Расчет статистических характеристик процесса:

к = 70.916; поле рассеяния 0.117; смещение наладки 0.059. В данном случае не рассчитывается о, так как рассматриваются сразу 4 параметра хода четырех шатунных шеек.

Расчет индексов воспроизводимости: Ср=1.28; Ср,=0.27. Контрольная х-карта: см. рис. 4.1.6: НКГ = 70.857; ВКГ= 70.975.

Анализ экспериментального и расчетного материала:

• Контрольная карта, а также расположение гистограммы показывают, что процесс не является статистически управляемым, так как имеется выход за верхнюю контрольную границу (49-я точка). Кроме того, имеет место выход процесса за границы поля допуска, что говорит о большой вероятности брака (22.5%). Двухпиковый тип гистограммы, а особенно вид контрольной карты указывают на необходимость расслоения данных, то есть рассмотрения хода каждой шейки по отдельности.

• Большая разница в индексах воспроизводимости процесса (Ср« = 0.27 < Ср = 1.28 ) свидетельствует о том, что процесс смещен относительно центра поля допуска (по расчетам на 0.059 мм в направлении нижнего предела допуска) и, следовательно, может быть улучшен.

Расслоение данных дало следующие результаты.

1-я шейка:

Интервальная таблица

70.86 70.87 70.88 70.89 70.90 70.91 7092
0 9 0 2 8 1 0

n=20, max=70.91; min=70.87; R = 0.04.

х = 70.89; а = 0.012; поле рассеяния 0.076; смещение наладки 0.086-Ср=1.9б.

2-я шейка:

Интервальная таблица

70.88 70.89 70.90 70.91 70.92 70.93 70.94 70.95
0162 0 6 5 0

n=20; max= 70.95; min = 70.89; R=0.06. х = 70.921; σ = 0.018; поле рассеяния 0.118; смещение наладки 0.055;

С-1.27.

3-я шейка:

Интервальная таблица

70.92 70.93 70.94 70.95 70.96 70.97 70.98 70.99
0 6 8 0 3 2 1 0

n=20; max= 70.98; mm =70.93; К =0.05. х = 70.946; σ = 0.016; поле рассеяния 0.1; смещение наладки 0.029;

Ср=1.49.

4-я шейка:

Интервальная таблица

70.84 70.86 70.88 70.90 70.92 70.94 70.96 70.98
024 11 1 1 1 0

n=20; max= 70.96; min = 70.87; R=0.09.

х = 70.907; о = 0.022; поле рассеяния 0.139; смещение наладки 0.069 Ср=1.075.

Выводы.

1. Сравнение статистических характеристик для отдельных шеек показывает, что наихудшие параметры имеет 4-ая шейка (поле рассеяния 0.139; С-= 1.075). Это указывает на необходимость проведения профилактического ремонта левого зажимного патрона.

2. Так как центральная линия на контрольной карте смещена относительно заданного номинального значения хода 71 мм, то требуется наладка станка, так, чтобы центр настройки совпадал с номинальным (или серединой поля допуска).

3. Из гистограмм и контрольной карты видно, что в настоящее время наилучшая наладка по исследуемому параметру на 3-ей шейке, поэтому на ней требуется наименьшая подналадка.

4. Необходимо добиться, чтобы все статистические параметры для всех четырех шеек были близки по своим значениям, то есть находились на одной линии, а поля рассеяния отличались незначительно.

4.2. Использование диаграмм Парето

Для наиболее успешного устранения несоответствий в готовой продукции по результатам контроля строятся диаграммы Парето. Приведем пример такой диаграммы, показывающей распределение дефектов в цехе 46 за период с 01.01.95 no31.12.95.

Группа деталей - Генератор

Код дефекта Наименование дефекта Кол-во Сумма

%

1 Не работает регулятор 852 42

2 Нет цепи обм. воз 291 56

3 Шум, магнитный шум 249 68

5 Утоплена клемма 61. 155 75

12 Нет цепи центра эв. 107 79

8 Клинит ротор 88 84

6 Замыкание диодов 52 86

4 Пробиты диоды 41 88

13 Замыкает 11 89

7 Не закреплен шкив 8 90

11 Прочие дефекты 196 100

Всего 2050

Устранение дефектов 1, 2, 3 даст возможность существенно повысить качество данного узла, следовательно, прежде всего надо сосредоточить усилия на выявлении причин этих несоответствий и внедрению мероприятий по их преодолению.


5. МАТЕМАТИЧЕСКИЕ ОСНОВЫ СТАТИСТИЧЕСКИХ МЕТОДОВ

5.1 Случайная величина. Общие определения

Случайная величина - это величина, измеряемая в исследуемых экспериментах, исходы которых заранее не известны и зависят от случайных причин.

Различают два вида случайных величин:

• дискретная - случайная величина, принимающая конечное или счетное множество значений х, ... , хn каждое с некоторой вероятностью pi,..., р,. Дискретная случайная величина задается законом распределения, устанавливающим однозначное соответствие между возможными значениями случайной величины и их вероятностями;

• непрерывная - случайная величина, которая может принимать все значения из некоторого конечного или бесконечного промежутка. Непрерывная случайная величина характеризуется плотностью вероятности -непрерывной функцией, такой что вероятность попадания случайной величины Х в интервал (а;Ь) равна

Пример 6.1. На контроль поступило несколько партий деталей. Контролируется размер отверстия. Диаметр отверстия - это непрерывная случайная величина, количество нестандартных деталей в каждой партии -дискретная случайная величина.

Генеральной совокупностью называется весь набор однородных объектов, изучаемых относительно некоторого качественного или количественного признака. Число всех изучаемых объектов N называется объемом генеральной совокупности.

Выборка - это та часть генеральной совокупности, элементы которой подвергаются статистическому обследованию. Число n вошедших выборку элементов называется объемом выборки.

Выборки бывают бесповторные, когда отобранный (и статистически обследованный) объект в генеральную совокупность не возвращается, и повторные, когда отобранный элемент после обследования возвращается в генеральную совокупность.