Смекни!
smekni.com

Статистические методы анализа качества (стр. 3 из 9)

После выявления проблемы путем составления диаграммы Парето по результатам полезно составить диаграмму Парето но причинам. Тогда появляется возможность определить причины возникновения проблемы и. следовательно, наметить пути устранения выявленной главной причины. Таким образом, выделяется наиболее эффективный путь решения проблемы.

Следует заметить, однако, что если какой-либо нежелательный фактор можно устранить сразу с помощью простого решения, это надо сделать немедленно (каким бы незначительным этот фактор ни был). При этом из рассмотрения исключается несущественный фактор, который просто перестает воздействовать.

Если группа "прочие" факторы составляет большой процент, то надо попытаться использовать какой-либо другой способ классификации (группировки) признаков. При этом может возникнуть необходимость в дополнительных исследованиях. Этого не следует бояться. Вообще для выявления сути проблемы имеет смысл строить много различных диаграмм Парето, исследуя самые разные факторы и способы их взаимодействия. Только в этом случае становится понятно, какие из факторов наиболее существенны и каковы возможные пути их преобразования.

2.3 Диаграммы Исикавы

Результат процесса зависит от многочисленных факторов, причем некоторые из них могут влиять на другие, то есть быть связанными отношениями "причина - результат". Знание структуры этих отношений, то есть выявление цепочки причин и результатов, позволяет успешно решать проблемы управления, в том числе и проблемы управления качеством. Для удобства анализа структуры причин и результатов используют диаграммы Исикавы - диаграммы причин и результатов.

В области контроля качества диаграмма Исикавы - это диаграмма, которая показывает отношение между показателем качества и воздействующими на него факторами.

Диаграмму причин и результатов иногда называют диаграммой "рыбий скелет" в силу ее специфического вида (см. рис. 2.3.1). Исследуя определенный показатель качества, стремятся сформулировать главные причины, влияющие на этот показатель. Затем выделяют вторичные факторы, влияющие на главные причины, а также более мелкие причины, воздействующие на вторичные факторы, и т. д. Таким образом, для составления диаграммы Исикавы надо проранжировать факторы по их значимости и установить структуру взаимовлияний.

Диаграмма причин и результатов графически отображает установленные связи следующим образом: посередине листа проводится горизонтальная прямая ("хребет"), оканчивающаяся прямоугольником, в котором указан рассматриваемый показатель качества. Главные причины, влияющие на данный показатель, записываются выше и ниже прямой и соединяются с хребтом стрелками. Вторичные причины записывают между прямой и соответствующей главной причиной и соединяют с этой причиной стрелками. Затем на диаграмме показывают факторы, влияющие на вторичные причины. Чтобы диаграмма была пригодна для дальнейшего использования, на ней необходимо указать всю сопутствующую информацию (название, наименование изделия, процесса или группы процессов, участников процесса и т. п.).

После того, как все факторы, влияющие на данный показатель качества, оказались отраженными на диаграмме, нетрудно установить степень их важности. Наиболее значимые, оказывающие самое сильное воздействие, следует отметить, с тем, чтобы именно им уделить наибольшее внимание при последующей работе.

Часто диаграммы Исикавы используют для систематизации списка причин. В этом случае при исследовании определенного показателя качества стараются найти максимальное число причин, влияющих на этот показатель, а уже затем располагают их в диаграмму причин - результатов, связывая все факторы в единую иерархическую структуру.

При построении диаграмм Исикавы важно как можно точнее сформулировать показатель, тогда диаграмма будет более конкретной. Чтобы силу связей причина - результат можно было оценить объективно, желательно формулировать показатель качества и влияющие на него факторы так, что бы их можно было измерить, то есть оценить численно. В некоторых случаях для этого приходится вводить числовые параметры, характеризующие исследуемый показатель. Например, качество окраски будет характеризоваться количеством непрокрашенных мест, либо толщиной красочного слоя, либо сорностью.

После выявления наиболее важных причин надо постараться найти те факторы, по которым можно принять меры. Если по обнаруженной причине нельзя предпринять никаких действий, проблема неразрешима, и поэтому следует попытаться разбить ее на подпричины. Использование диаграммы помогает обнаружить элементы, которые нужно проверить, устранить или модифицировать, а также те элементы, которые надо добавить. Если стремиться усовершенствовать диаграмму, то можно не только лучше разобраться в исследуемом процессе, но и найти пути улучшения технологии изготовления изделия.

2.4 Гистограммы

Большинство факторов, оказывающих влияние на производственный процесс, не остаются неизменными. Поэтому числовые данные, собранные в результате наблюдения, не могут быть одинаковыми, но обязательно подчиняются определенным закономерностям, называемым распределением (см. гл. 6).

Если измерять контролируемый параметр непрерывно, можно построить его график плотности распределения (см. раздел 6.3). Однако на практике проводят измерения только в определенные промежутки времени и не всех изделий, а только некоторых. Поэтому по результатам измерений строят обычно гистограмму - ступенчатую фигуру, контуры которой дают приблизительное представление о графике плотности, то есть о характере распределения изучаемого параметра.

Гистограмма - это столбиковая диаграмма, служащая для графического представления имеющейся количественной информации.

Обычно основой для построения гистограммы служит интервальная таблица частот, в которой весь диапазон измеренных значений случайной величины разбит на некоторое число интервалов, и для каждого интервала указано количество значений, попавших на данный интервал (частота ).

2.4.1 Построение гистограммы

Отметить на оси абсцисс максимальное и минимальное значения случайной величины и границы интервалов - точки a1, ..., an, . Для удобства расчетов и последующего анализа можно немного расширить диапазон значений случайной величины, например, до границ поля допуска.

Длина каждого интервала h = ( an+1 – an ) / k .

Над каждым интервалом построить прямоугольник высотой n/h (его площадь н,). Получившаяся ступенчатая фигура называется гистограммой частот. При этом площадь гистограммы частот равна объему выборки n:

Отрезок [a, an,] назовем основанием гистограммы.

Аналогично строится и гистограмма относительных частот - ступенча¬тая фигура, состоящая из прямоугольников, площади которых равны n/h , то есть общая площадь гистограммы относительных частот равна 1.

2.4.2 Анализ гистограмм

При построении гистограмм могут встретиться следующие случаи (рис. 2.4.)-2.4.7):

1) Обычный тип (симметричный или колоколообразный). Наивысшая частота оказывается в середине основания гистограммы (и постепенно снижается к обоим концам). Форма симметрична (рис. 2.4.1). Такая гистограмма по внешнему виду приближается к нормальной (гауссовской) кривой, и можно предполагать, что ни один из факторов, влияющих на исследуемый процесс, не преобладает над другими.

Примечание. Эта форма встречается чаще всего. В этом случае среднее значение случайной величины (применительно к технологической операции - это показатель уровня настроенности) близко к середине основания гистограммы, а степень ее рассеяния относительно среднего значения (для технологических операций - это показатель точности) характеризуется крутизной снижения столбцов

2) Гребенка (мультимодальный тип). Классы через один имеют более низкие частоты (рис. 2.4.2).

Примечание. Такая форма встречается, кода число единичных наблюдении, попадающих в класс, колеблется от класса к классу или когда действует определенное пра¬вило округления данных Возможно требуется осуществить расслоение данных, то есть определить дополнительные признаки для группировки наблюдаемых значений

3) положительно скошенное распределение (отрицательно скошенное распределение). Среднее значение гистограммы локализуется справа (сле¬ва) от середины основания гистограммы. Частоты довольно резко спадают

при движении влево (вправо) и, наоборот, медленно вправо (влево). Форма асимметрична (рис. 2.4.3).

Примечание. Такая форма встречается, когда нижняя (верхняя) граница регулируется либо теоретически, либо по значению допуска или когда левое (правое) значение недостижимо. В этом случае также можно предполагать, что на процесс оказывает преобладающее влияние какой-либо фактор, в частности, подобная форма встречается, когда имеет место замедленный (ускоренный) износ режущего инструмента.

Подобная гистограмма характерна также для распределения Рэлея (раздел 6.3), которое характеризует форму либо несимметричность изделия.

4) Распределение с обрывом слева (распределение с обрывом справа). Среднее арифметическое гистограммы локализуется далеко слева (справа) от середины основания. Частоты резко спадают при движении влево (вправо) и, наоборот, медленно вправо (влево). Форма асимметрична (рис. 2.4.4).

Примечание. Это одна из тех форм, которые часто встречаются при 100 %-ном просеивании изделий из-за плохой воспроизводимости процесса, а также когда проявляется резко выраженная положительная (отрицательная) асимметрия.

5) Плато (равномерное и прямоугольное распределения). Частоты в разных классах образуют плато, поскольку все классы имеют более или менее одинаковые ожидаемые частоты (рис. 2.4.5).

Примечание. Такая форма встречается в смеси нескольких распределений, имеющих различные средние, но может также указывать на какой-либо преобладающий фактор, например, равномерный износ режущего инструмента.