Смекни!
smekni.com

Статистика в практике (стр. 1 из 3)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО – ЭКОНОМИЧЕСКИЙ

ИНСТИТУТ ФИЛИАЛ В ГОРОДЕ ТУЛЕ

КАФЕДРА СТАТИСТИКИ

КОНТРОЛЬНАЯ РАБОТА

по дисциплине «Статистика»

ВАРИАНТ 7

Выполнил:

Проверил:

Тула2007

ИСХОДНЫЕ ДАННЫЕ

Имеются следующие выборочные данные по предприятиям одной из отраслей экономики в отчетном году (выборка 20% - ная механическая):

№ пр-яп/п Средене –списочнаячисленностьработников, чел. Выпуск продукции,млн.руб. № пр-яп/п Средене –списочнаячисленностьработников, чел. Выпуск продукции,млн.руб.
1 159 37 16 137 25
2 174 47 17 171 45
3 161 40 18 163 41
4 197 60 19 145 28
5 182 44 20 208 70
6 220 64 21 166 39
7 245 68 22 156 34
8 187 59 23 130 14
9 169 43 24 170 46
10 179 48 25 175 48
11 120 24 26 184 54
12 148 36 27 217 74
13 190 58 28 189 56
14 165 42 29 177 45
15 142 30 30 194 61

ЗАДАНИЕ 1

По исходным данным:

1. Постройте статистический ряд распределения организаций (предприятий) по признаку среднесписочная численность работников, образовав пять групп с равными интервалами.

2. Постройте графики полученного ряда распределения. Графически определите значения моды и медианы.

3. Рассчитайте характеристики интервального ряда распределения:

· среднюю арифметическую;

· среднее квадратическое отклонение;

· коэффициент вариации;

· моду и медиану.

4. Вычислите среднюю арифметическую по исходным данным, сравните ее с аналогичным показателем, рассчитанным в п.3 для интервального ряда распределения. Объясните причину их расхождения.

Сделайте выводы по результатам выполнения задания.

РЕШЕНИЕ:

1. Статистический ряд распределения представляет собой упорядоченное распределение единиц изучаемой совокупности на группы по определенному варьирующему признаку. Он характеризует состав (структуру) изучаемого явления, позволяет судить об однородности совокупности, закономерности распределения и границах варьирования единиц совокупности.

Для группировок с равными интервалами величина интервала:

,

где

- наибольшее и наименьшее значения признака;

n – число групп.

чел.

В результате получим следующий ряд распределения (табл.1.1):

Таблица 1.1.

Интервальный ряд Дискретный ряд
- количество предприятий внутри i – той группы
%
1гр.: 120–140 (120+140)/2=130 3 10%
2гр.: 140 – 160 (140+160)/2=150 5 16.7%
3гр.: 160 – 180 (160+180)/2=170 11 36.7%
4гр.: 180 – 200 (180+200)/2=190 7 23.3%
5гр.: 200 – 220 (200+220)/2=210 4 13.3%

2.Мода – значение признака, наиболее часто встречающееся в изучаемой совокупности. Для дискретных рядов распределения – вариант, имеющий наибольшую частоту.

Медиана – это вариант, который находится в середине вариационного ряда, делящий его на две равные части.

3. Рассчитаем характеристики интервального ряда распределения:

· Средняя арифметическая.

Если значения осредняемого признака заданы в виде интервалов (“от – до”), т.е. интервальных рядов распределения (табл.1.1), то при расчете средней арифметической величины в качестве значений признаков в группах принимаются середины этих интервалов, в результате чего образуется дискретный ряд (табл.1.1). Т.о. средняя арифметическая будет равна:

,

где

- средняя численность работников внутри i – той группы;

- количество предприятий внутри i – той группы;

чел.

· Среднее квадратическое отклонение.

Представляет собой корень квадратный из дисперсии. Дисперсия признака представляет собой средний квадрат отклонения вариантов от их средней величины, она вычисляется по формуле:

=
=526

Среднее квадратическое отклонение показывает, на сколько, в среднем отклоняются конкретные варианты от их среднего значения; является абсолютной мерой колеблемости признака и выражается в тех же единицах, что и варианты.

= 23 чел.

· Коэффициент вариации.

13,3%

По величине коэффициента вариации можно судить о степени вариации признаков, а следовательно, об однородности состава совокупности. Совокупность считается количественно однородной, если коэффициент однородности не превышает 33%. Т.о., в рассматриваемом варианте совокупность количественно однородная.

· Мода и медиана.

Для интервальных вариационных рядов распределения мода рассчитывается по формуле:

,

где

- мода;

- нижняя граница модального интервала;

- величина модального интервала;

- частота модального интервала;

- частота интервала, предшествующего модальному;

- частота интервала, следующего за модальным.

= 172 чел.

Модальный интервал определяется по наибольшей частоте.

Наибольшее число предприятий – 11 – имеют среднесписочную численность работников в интервале 160 – 180 чел., который и является модальным. Итак, модальным значением среднесписочной численности работников по предприятиям одной из отраслей экономики является численность равная 172 чел. В интервальных рядах распределения медианное значение (поскольку оно делит всю совокупность на две равные по численности части) оказывается в каком – то из интервалов признака

. Этот интервал характерен тем, что его кумулятивная частота (накопленная сумма частот)равна или превышает полусумму всех частот ряда.

Значение медианы рассчитывается по формуле:

,

где

- медиана;

- нижняя граница медианного интервала;

- величина медианного интервала;

- сумма частот ряда;

- частота медианного интервала;

- сумма накопленных частот ряда, предшествующих медианному интервалу.

Прежде всего, найдем медианный интервал. Таким интервалом будет интервал среднесписочной численности работников 160 – 180 чел., поскольку его кумулятивная частота равна 19(3+5+11), что превышает половину суммы всех частот (30/2=15).

=173 чел.

Полученный результат говорит о том, что из 30 предприятий одной из отраслей экономики 15 предприятий имеют среднесписочную численность работников 173 чел., а 15 предприятий – более.

4. Вычислим среднюю арифметическую по исходным данным.

= 173 чел.

Результат расчетов средней арифметической в п.3 совпадает с результатом расчетов в п.4. Это произошло потому, что при исчислении средней арифметической в интервальном ряде допускается некоторая неточность, поскольку делается предположение о равномерности распределения единиц признака внутри группы. Ошибка будет тем меньше, чем уже интервал и чем больше единиц в интервале. Т.к. интервал в нашей задаче достаточно узкий - 20, а число единиц в интервале достаточно большое, следовательно, ошибка расчетов в п.3 мала, и результаты расчетов п.3 и п.4 совпадают.