ЗАДАНИЕ 2
По исходным данным:
1. Установите наличие и характер связи между признаками среднесписочная численность работников (х – факторный) и выпуском продукции (y - результативный), образовав 5 групп по обоим признакам с равными интервалами, методами:
· аналитической группировки:
· корреляционной таблицы.
2. Измерьте тесноту корреляционной связи между названными признаками с использованием коэффициента детерминации и эмпирического корреляционного отношения.
Сделайте выводы по результатам выполненного задания.
РЕШЕНИЕ
1. Аналитическая группировка.
· Основные этапы проведения аналитической группировки – обоснование и выбор факторного и результативного признаков, подсчет числа единиц в каждой из образованных групп, определение объема варьирующих признаков в пределах созданных групп, а также исчисление средних размеров результативного показателя. Результаты группировки оформляются в таблице. Установим наличие и характер связи между величиной среднесписочной численности работников и выпуском продукции методом аналитической группировки по данным таблицы исходных данных.
Вначале строим рабочую таблицу (табл.2.1).
Таблица 2.1.
Распределение предприятий по среднесписочной численности работников.
№п.п | Группы предприятий по среднесписочной численности работников | № пред-прия-тия | Среднесписочная численность работников, чел. | Объем выпускаемой продукции, млн.руб. |
А | Б | 1 | 2 | 3 |
I | 120 – 140 | 112316 | 120130137 | 241425 |
Итого | 3 | 387 | 63 | |
II | 140 - 160 | 151912221 | 142145148156159 | 3028363437 |
Итого | 5 | 750 | 165 | |
III | 160 - 180 | 3181492124172252910 | 161163165169166170171174175177179 | 4041424339464547484548 |
Итого | 11 | 1870 | 484 | |
IV | 180 - 200 | 52682813304 | 182184187189190194197 | 44545956586160 |
Итого | 7 | 1323 | 392 | |
А | Б | 1 | 2 | 3 |
V | 200 - 220 | 207276 | 208215217220 | 70687464 |
Итого | 4 | 860 | 276 | |
Всего | 30 | 5190 | 1380 |
Для установления наличия и характера связи между величиной среднесписочной численности работников и объемом выпускаемой продукции по данным рабочей таблицы 2.1 строим итоговую аналитическую таблицу 2.2.
Таблица 2.2.
Зависимость объема выпускаемой продукции от среднесписочной численности работников.
№п.п. | Группы предприятий по среднесписочной численности работников | Числопред –приятий | Среднесписочная численность работников | Объем выпускаемой продукции | ||
Всего | Средняя численность работников | Всего | в среднем на одно предприятие | |||
А | Б | 1 | 2 | 3 | 4 | 5 |
120 – 140140 – 160160 – 180180 – 200200 – 220 | 351174 | 38775018701323860 | 129150170189215 | 63165484392276 | 2133445669 | |
Итого | 30 | 5190 | 173 | 1380 | 46 |
Данные таблицы 2.2 показывают, что с ростом среднесписочной численности работников, средний объем продукции, выпускаемой одним предприятием, растет. Следовательно, между исследуемыми признаками существует прямая корреляционная зависимость.
· Корреляционная таблица.
Для изучения структуры предприятий по объему выпускаемой продукции, пользуясь таблицей исходных данных, построим интервальный вариационный ряд, характеризующий распределение предприятий по объему выпускаемой продукции. Величина интервала равна:
12 млн.руб.Интервальный ряд | Дискретный ряд | - количество предприятий внутри i – той группы |
1гр.: 14 – 26 | (14+26)/2=20 | 3 |
2гр.:26 – 38 | (26+38)/2=32 | 5 |
3гр.:38 – 50 | (28+50)/2=44 | 12 |
4гр.: 50 – 62 | (50+62)/2=56 | 6 |
5гр.: 62 – 74 | (62+74)/2=68 | 4 |
По таблице исходных данных необходимо определить, существует ли зависимость между среднесписочной численностью работников (факторный признак х) и выпускаемой продукцией (результативный признак y).
Построим корреляционную таблицу, образовав 5 групп по факторному и результативному признакам (табл.2.3).
Таблица 2.3.
Распределение предприятий по среднесписочной численности работников и объему выпускаемой прдукции.
Среднесписочная численность работников | Выпускаемая продукция, млн.руб. | |||||
14 – 26 | 26 – 38 | 38 – 50 | 50 – 62 | 62 – 74 | Итого | |
120 – 140 | 3 | 3 | ||||
140 – 160 | 5 | 5 | ||||
160 – 180 | 11 | 11 | ||||
180 – 200 | 1 | 6 | 7 | |||
200 – 220 | 4 | 4 | ||||
Итого | 3 | 5 | 12 | 6 | 4 | 30 |
Как видно из данных табл.2.3, распределение числа предприятий произошло вдоль диагонали, проведенной из левого верхнего угла в правый нижний угол таблицы, т.е. увеличение признак “среднесписочная численность работников” сопровождалось увеличением признака “выпускаемая продукция”.
Характер концентрации частот по диагонали корреляционной таблицы свидетельствует о наличии прямой тесной корреляционной связи между изучаемыми признаками.
2. Теснота корреляционной связи между названными признаками может быть измерена с помощью коэффициента детерминации и эмпирического корреляционного отношения.
· Коэффициент детерминации равен отношению межгрупповой дисперсии к общей:
Межгрупповая дисперсия равна:
=Общая дисперсия равна:
=249 + 186 = 435Средняя из групповых дисперсий:
= =Групповая дисперсия равна:
= 0.428 или 42,8%Это означает, что выпускаемая продукция на 42,8% зависит от среднесписочной численности работников, а на 57,2% - от других факторов.
· Эмпирическое корреляционное отношение.
Чем значение корреляционного отношения ближе к единице, тем теснее, ближе к функциональной зависимости связь между признаками.
В нашем примере
, что свидетельствует (из соотношения Чэддока) о тесной связи (0,7 – 0,9) между выпуском продукции и среднесписочной численностью работников.ЗАДАНИЕ 3
По результатам выполнения задания 1 с вероятностью 0,683 определите:
1. Ошибку выборки среднесписочной численности работников и границы, в которых будет находиться среднесписочная численность работников в генеральной совокупности.
2. Ошибку выборки доли предприятия со среднесписочной численностью работников 180 и более человек и границы, в которых будет находиться генеральная доля.
РЕШЕНИЕ
1. Для определения среднесписочной численности работников на предприятиях была произведена 20% - ная механическая выборка, в которую попало 30 предприятий. В результате обследования было установлено, что средняя арифметическая среднесписочной численности работников 173 чел. При среднем квадратическом отклонении 23 чел.
Границы, в которых будет находиться среднесписочная численность работников в генеральной совокупности
Т.к. выборка механическая, предельная ошибка выборки определяется по формулам:
где N – объем генеральной совокупности (число входящих в нее единиц). Т.к. выборка 20% - ная, то N=150 (5*30).
20% - ная выборка означает, что отбирается и проверяется каждая 5-ая единица (1:0,2).
n – объем выборки (число обследованных единиц) = 30 предприятий.
- генеральная дисперсия (дисперсия признака в генеральной совокупности).t= 1 (из таблицы значений интегральной функции Лапласа при заданной вероятности 0,683)
чел.С вероятностью 0,683 можно утверждать, что среднесписочная численность работников находится в пределах
или