Смекни!
smekni.com

Средние велиичины в экономическом анализе (стр. 6 из 6)

Рисунок 3. Распределение предприятий по величине средней заработной платы по городам и районам.

Ящичковая диаграмма представляет ранжированный ряд значений заработной платы на предприятиях городов и районов. На всех ящичках значение медианы (жирная черта) смещено к низу, то есть ближе к минимальной величине заработной платы; в городах оно выше, чем в районах. Межквартильная широта (высота ящичка) показывает, насколько сильно различается уровень зарплаты у половины предприятий, находящихся в центре ранжированного ряда. Она несколько больше в городах (2-3 тыс.), ниже - в районах (1,2-2 тыс.). Экстремально высокие значения зарплаты на предприятиях городов начинаются с 6-10 тыс. рублей, районов - с 4-6 тыс.

Лишь города Усинск и Ухта выделяются большим разбросом значений средней зарплаты основной массы предприятий. Здесь больше межквартильная широта (соответственно 6,8 и 4,1 тыс. рублей) и выше граница экстремальных значений (с 19 и с 12 тыс.).

Величина средней заработной платы не превышала прожиточный минимум для трудоспособного населения (в среднем по республике он составил 1,9 тыс. рублей) более чем на трети предприятий, где была занята пятая часть работающих. Однако в большинстве районов эта доля была значительно выше (см. рис. 4):

Рисунок 4. Доля работающих со средней заработной платой меньше прожиточного минимума (в % к общей численности работающих в городе,районе)

Таким образом, наблюдается резкая дифференциация зарплаты в пределах городов и районов и между ними. Имеются экстремально высокие значения начисленной заработной платы, на порядок и более превышающие минимальные размеры заработной платы. При этом минимальные уровни зарплаты не представлены ни как выбросы, ни как экстремумы, то есть значения, явно отличающиеся от основной их массы. Напротив, основная доля работающих имеет довольно невысокий уровень зарплаты. Пятая часть из них получает заработную плату, не превышающую прожиточный минимум для трудоспособного населения, а в ряде районов - половина и более. Заработная плата половины работающих не превышает 3,1 тыс. рублей. Те, кто не относится ни к низко-, ни к высокооплачиваемым, получают в пределах 1,9-5,9 тыс. рублей. Меньшую, чем среднюю по республике заработную плату (4,6 тыс. рублей), имеют 66% работников.

Выявленные пропорции позволяют предположить, что уровень средней зарплаты несколько завышен, если оценивать основную массу работающих. Поэтому возникает необходимость применения альтернативных показателей, характеризующих среднее значение заработной платы.

Одним из них является медиана, величина которой приводилась выше (3,1 тыс. рублей).

Иногда для аналитических целей используется 5%-ное усеченное среднее. Оно вычисляется путем упорядочивания значений по возрастанию, отсечением (удалением) 5% значений от начала и от конца, а затем - вычислением обычного среднего для оставшихся значений. Как уже отмечалось, именно эта доля работающих на крупных и средних предприятиях получает зарплату с экстремально высокими значениями. То есть 5%-ное усеченное среднее - более корректный показатель. По республике он составил 4,1 тыс. рублей, что меньше средней зарплаты (4,6 тыс.), но больше медианы.

И все же традиционно в аналитической работе используется среднее. Поэтому актуальной становится задача корректного вычисления этого показателя, то есть с учетом того, что оценка среднего очень чувствительна к экстремальным значениям.

Вычисление среднего, сравнение групповых средних допустимо только для переменных с так называемым нормальным распределением. В существующей практике органами статистики среднее вычисляется без проверки характера распределения, хотя последнее может оказаться не похожим на нормальное. Это может привести к ошибочным выводам, особенно когда распределение значительно отклоняется от нормального. Плотность нормального распределения представляет симметричную кривую, в которой численности растут до максимума, а потом с такой же постепенностью убывают. Приведение данных к нормальному распределению заключается в преобразовании исходных данных - логарифмировании, возведении в степень, извлечении корня и т.п.

В нашем случае кривая нормального распределения несимметрична, имеет длинный «хвост», что видно на гистограмме (рис. 1). Для улучшения распределения показателя «заработная плата» использовалось возведение в степень. После этого было найдено среднее, 5%-ное усеченное среднее, медиана. Далее с ними были произведены вычисления, обратные проведенным преобразованиям. В результате были получены следующие значения:

Таблица 14. Показатели, характеризующие средний уровень заработной платы.

Заработная плата по республике, рублей
Среднее 5%-ное усеченное среднее Медиана
До преобразования 4581 4044 3098
После преобразования 3349 3349 3097

После преобразований значение медианы практически не изменилось, значения среднего и 5%-ного усеченного среднего сравнялись и гораздо меньше стали отличаться от медианы.

Таким образом, средняя заработная плата по крупным и средним предприятиям республики составила 4,6 тыс. рублей, однако для основной доли этих предприятий среднее намного ниже - 3,3 тыс. рублей.

Итак, в республике наблюдается существенная дифференциация уровней заработной платы, что отражает процесс расслоения общества по величине доходов. Применяемое в статистической практике среднее, вычисляемое без проверки характера распределения данных, испытывает влияние экстремальных значений и может искажать явления, происходящие в обществе. Значимость этого вывода имеет особую важность для показателей, характеризующих уровень жизни.

Заключение

В заключении подведем итоги. Средние величины — это обобщающие показатели, в которых находят выражения действие общих условий, закономерность изучаемого явления. Статистические средние рассчитываются на основе массовых данных правильно статистически организованного массового наблюдения (сплошного или выборочного). Однако статистическая средняя будет объективна и типична, если она рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений). Применение средних должно исходить из диалектического понимания категорий общего и индивидуального, массового и единичного.

Средняя отражает то общее, что складывается в каждом отдельном, единичном объекте благодаря этому средняя получает большое значение для выявления закономерностей присущих массовым общественным явлениям и незаметных в единичных явлениях.

Отклонение индивидуального от общего — проявление процесса развития. В отдельных единичных случаях могут быть заложены элементы нового, передового. В этом случае именно конкретных фактор, взятые на фоне средних величин, характеризует процесс развития. Поэтому в средней и отражается характерный, типичный, реальный уровень изучаемых явлений. Характеристики этих уровней и их изменений во времени и в пространстве являются одной из главных задач средних величин. Так, через средние проявляется, например, свойственная предприятиям на определенном этапе экономического развития; изменение благосостояния населения находит свое отражение в средних показателях заработной платы, доходов семьи в целом и по отдельным социальным группам, уровня потребления продуктов, товаров и услуг.

Средний показатель — это значение типичное (обычное, нормальное, сложившееся в целом), но таковым оно является по тому, что формируется в нормальных, естественных условиях существования конкретного массового явления, рассматриваемого в целом. Средняя отображает объективное свойство явления. В действительности часто существует только отклоняющиеся явления, и средняя как явления может и не существовать, хотя понятие типичности явления и заимствуется из действительности. Средняя величина является отражения значения изучаемого признака и, следовательно, измеряется в той же размеренности что и этот признак. Однако существуют различные способы приближенного определения уровня распределения численности для сравнения сводных признаков, непосредственно не сравнимых между собой, например средняя численность населения по отношению к территории (средняя плотность населения). В зависимости от того, какой именно фактор нужно элиминировать, будет находиться и содержание средней.

Сочетание общих средних с групповыми средними дает возможность ограничить качественно однородные совокупности. Расчленяя массу объектов, составляющих то или иное сложное явления, на внутренне однородные, но качественно различные группы, характеризуя каждую из групп своей средней, можно вскрыть резервы процесс нарождающегося нового качества. Например, распределения населения по доходу позволяет выявить формирование новых социальных групп. В аналитической части мы рассмотрели частный пример использования средней величины. Подводя итог можно сказать, что область применения и использования средних величин в статистике довольно широка.

Список литературы:

  1. Бестужев-Лада И.В. Мир нашего завтра, М.: «Мысль», 1998
  2. Боярский А.Я., Громыко Г.Л. Общая теория статистики, М., 1995.
  3. Гусаров В.М. Теория статистики. – М., 1998.
  4. Российский статистический ежегодник. – М.:2002. – часть1
  5. http://www.infostat.ru
  6. http://www.vedi.ru.

[1] Кетле А. Социальная физика или Опыт исследования о развитии человеческих способностей. Т. 1. Киев. – 1911. – С. 37.