Если исследуемое явление не является однородным, то его разбивают на группы, содержащие только однородные элементы. Для такого явления рассчитываются сначала средние по группам, которые называются групповые средние, – они будут выражать наиболее типичную величину явления в каждой группе. Затем рассчитывается для всех элементов общая средняя величина, характеризующая явление в целом, – она рассчитывается как средняя из групповых средних, взвешенных по числу элементов совокупности, включенных в каждую группу. На практике, однако, безусловное выполнение данного условия повлекло бы за собой ограничение возможностей статистического анализа общественных процессов. Поэтому, часто средние величины рассчитываются по неоднородным явлениям. Например, при расчете величины средней заработной платы по Тюменской области, когда совместно анализируется заработная плата труда в автономных округах и в южных районах Тюменской области, а затем полученный средний уровень заработной платы труда сопоставляется с соседними сибирскими регионами.
Еще одним важным условием применения средних величин в анализе является достаточное количество единиц в совокупности, по которой рассчитывается среднее значение признака. Достаточность анализируемых единиц обеспечивается корректным определением границ исследуемой совокупности, т.е. закладывается еще на начальном этапе статистического исследования. Данное условие становится решающим при применении выборочного наблюдения, когда необходимо обеспечить репрезентативность выборки.
Определение максимального и минимального значения признака в изучаемой совокупности также является условием применения средней величины в анализе. В случае больших отклонений между крайними значениями и средней, необходимо проверить принадлежность экстремумов к исследуемой совокупности. Если сильная изменчивость признака вызвана случайными, кратковременными факторами, то, возможно, крайние значения не характерны для совокупности. Следовательно, их следует исключить из анализа, т.к. они оказывают влияние на размер средней величины.
В статистике выделяют несколько видов средних величин:
1. По наличию признака-веса:
а) невзвешенная средняя величина;
б) взвешенная средняя величина.
2. По форме расчета:
а) средняя арифметическая величина;
б) средняя гармоническая величина;
в) средняя геометрическая величина;
г) средняя квадратическая, кубическая и т.д. величины.
3. По охвату совокупности:
а) групповая средняя величина;
б) общая средняя величина.
Средние величины различаются в зависимости от учета признаков, влияющих на осредняемую величину:
Если средняя величина рассчитывается для признака, без учета влияния на него каких-либо других признаков, то такая средняя величина называется средней невзвешенной или простой средней.
Если имеются сведения о влиянии на осредняемый признак некоторого признака или нескольких признаков, которые необходимо учесть при расчете для корректного расчета средней величины, то рассчитывается средняя взвешенная.
По форме расчета выделяют несколько видов средних величин, которые образованы из единой степенной средней величины. Степенная средняя величина имеет форму:
,где
- среднее значение исследуемого явления;k – показатель степени средней;
x – текущее значение (вариант) осредняемого признака;
i –i-тый элемент совокупности;
n – число наблюдений (число единиц совокупности).
При разных показателях степени k получаем, соответственно, различные по форме средние величины. (Табл. 1):
Таблица 1
Степень средней величины (k) | Название средней |
-1 | гармоническая |
0 | геометрическая |
1 | арифметическая |
2 | квадратическая |
3 | кубическая |
Выбор формы средней обусловлен исходным соотношением, суть которого приводилась выше. Существует порядок расчета средней величины:
1. Определение исходного соотношения для исследуемого показателя.
2. Определение недостающих данных для расчета исходного соотношения.
3. Расчет средней величины.
Рассмотрим некоторые виды средних, которые наиболее часто используются в статистике.Для этого введем следующие понятия и обозначения:
Признак, по которому находится средняя, называемый осередняемым признаком, обозначим буквой "х"
№ раб. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Выпущено изделий за смену | 16 | 17 | 18 | 17 | 16 | 17 | 18 | 20 | 21 | 18 |
В данном примере варьирующий признак - выпуск продукции за смену.
Численные значения признака (16, 17 и т. д.) называют вариантами. Определим среднюю выработку продукции рабочими данной группы:
Простая средняя арифметическая применяется в случаях, когда имеются отдельные значения признака, т.е. данные не сгруппированы. Если данные представлены в виде рядов распределения или группировок, то средняя исчисляется иначе.
Средняя арифметическая взвешенная вычисляется по формуле
, где fi - частота повторения i-ых вариантов признака, называемая весом. Таким образом, средняя арифметическая взвешенная равна сумме взвешенных вариантов признака, деленная на сумму весов. Она применяется в тех случаях, когда каждая варианта признака встречается несколько (неравное) число раз.Статистический материал в результате обработки может быть представлен не только в виде дискретных рядов распределения, но и в виде интервальных вариационных рядов с закрытыми или открытыми интервалами. В таких рядах условно величина интервала первой группы принимается равной величине интервала последующей, а величина интервала последней группы - величине интервала предыдущей. Дальнейший расчет аналогичен изложенному выше.
При расчете средней по интервальному вариационному ряду необходимо сначала найти середину интервалов. Это и будут значения xi, а количество единиц совокупности в каждой группе fi (таблица 2).
Таблица 2
Возраст рабочего, лет | Число рабочих, чел (fi) | Середина возрастного интервала, лет (xi) |
20-30 30-40 40-50 50-60 60 и более | 7 13 48 32 6 | 25 35 45 55 65 |
Итого | 106 | Х |
Средний возраст рабочих цеха будет равен
лет.В практике экономической статистики иногда приходится исчислять среднюю по групповым средним или по средним отдельных частей совокупности (частным средним). В таких случаях за варианты (х) принимаются групповые или частные средние, на основании которых исчисляется общая средняя как обычная средняя арифметическая взвешенная.
Средняя арифметическая обладает рядом свойств:
1. От уменьшения или увеличения частот каждого значения признака х в п раз величина средней арифметической не изменится.
Если все частоты разделить или умножить на какое-либо число, то величина средней не изменится.
2. Общий множитель индивидуальных значений признака может быть вынесен за знак средней:
3. Средняя суммы (разности) двух или нескольких величин равна сумме (разности) их средних:
4. Если х = с, где с - постоянная величина, то
.