Смекни!
smekni.com

Расчет показателей корреляционного, дисперсионного анализа (стр. 3 из 6)

Для интервального ряда распределения мода рассчитывается по следующей формуле


где xMo — нижняя граница модального интервала; iMo — величина модального интервала; fMo, fMo−1, fMo+1 — частота модального, предшествующего модальному и последующего за модальным интервала.

Модальным интервалом по значению числа видов производимой продукции является интервал 8-10, т.к. наибольшее число предприятий (14) находится в данном интервале.

Мо = 8 + 2 · (14 – 11)/((14 – 11) + (14 – 13)) = 9,5

Наиболее часто встречающееся значение числа видов производимой продукции является 9,5.

Медианой называется варианта, которая находится в середине вариационного ряда по частоте. Медиана делит ряд пополам, по обе стороны от нее находится одинаковое количество единиц совокупности. Медиана показывает количественную границу варьирующего признака, которую достигла половина членов совокупности.

В интервальном ряду распределения медиана рассчитывается следующим образом

где xMo — нижняя граница медианного интервала;

iMo— величина медианного интервала;

SMe−1 — частота, накопленная до медианного интервала;

f— частота медианного интервала.

Для расчета медианы определяются накопленные частоты. Медианным является интервал, на который приходится половина предприятий, т.е. интервал 5 – 7.

Ме = 5 + 2 · (60/2 – 11)/11 = 8,45.

Половина предприятий выпускает 8,45 видов производимой продукции.

При определении средней величины в интервальном ряду с открытыми интервалами прежде всего необходимо закрыть интервалы.

Используем формулу средней арифметической взвешенной

где x — значения (варианты) признака; n — число вариантов (число наблюдений), из которых рассчитывается средняя; f — статистический вес (число повторений значения признака).

Х = (2,5 · 11 + 6 · 11 + 9 · 14 + 12 · 13 + 15 · 5 + 18 · 6)/60 = 9,31

Таблица 5.2

Число видов производимой колбасной продукции Число предприятий в группе Суммарный объём выпуска колбасной продукции по группе предприятий, Q, т Средняя энергоёмкость 1 т продукции по группе предприятий, E,ГДж/ т Средняя себестоимость 1 т продукции по группе предприятий, С тыс. руб./ т Q·E Q·C
До 4 11 580 6,2 86 3596 49880
5 – 7 11 520 6,5 91 3380 47320
8 – 10 14 610 6,3 87 3843 53070
11 – 13 13 480 6,6 93 3168 44640
14 – 16 5 210 6,9 96 1449 20160
17 и более 6 300 7,1 95 2130 28500
Σ 2700 17566 243570

При определении средней в целом по совокупности предприятий энергоёмкость продукции и средней себестоимости 1 т колбасных изделий по совокупности предприятий используем формулу средней арифметической взвешенной

где x — значения (варианты) признака; n — число вариантов (число наблюдений), из которых рассчитывается средняя; f — статистический вес (число повторений значения признака).

Средняя в целом по совокупности предприятий энергоёмкость продукции

Еср = (580 · 6,2 + 520 · 6,5 + 610 · 6,3 + 480 · 6,6 + 210 · 6,9 + 300 · 7,1)/2700 = =6.505926 ГДж/ т.

Средняя себестоимость 1 т колбасных изделий по совокупности предприятий

Сср = (580 · 86 + 520 · 91 + 610 · 87 + 480 · 93 + 210 · 9,6 + 300 · 95)/2700 = =90.21111 тыс. руб./ т.

Задание №10

По данным табл. 10: 1) графически изобразить зависимость результирующего показателя от каждой факторной величины; 2) построить уравнения парной регрессии результирующего показателя от каждого отдельного фактора; 3) рассчитать выровненные значения результирующего показателя по полученным уравнениям регрессии; 4) рассчитать характеристики тесноты (силы) корреляционной зависимости результата от каждого из факторов в отдельности и от совокупности обоих факторов. Сделать выводы по результатам расчётов.

Таблица 10

Город Среднедушевое потребление деликатесной мясной продукции в год, кг/ чел. Среднегодовая цена продукции по городу, руб./кг Среднедушевой доход одного жителя города за месяц, тыс. руб./ чел.
А 3,5 215 4,6
Б 3,8 230 4,8
В 6,2 265 6,7
Г 4,6 205 5,1
Д 5,7 200 4,3
Е 4,1 220 5,0
Ж 3,3 225 4,0
З 4,9 230 6,1
И 5,2 250 6,4
К 4,0 245 5,2

Решение:


Y X Z Y-Yср (Y-Yср)2 Х-Хср (х-хср)2 Z-Zср (Z-Zср)2 (Y-Yср) * (Х-Хср) (Y-Yср) * (Z-Zср)
3.5 215 4.6 -1.03 1.0609 -13.5 182.25 -0.62 0.3844 13.905 0.6386
3.8 230 4.8 -0.73 0.5329 1.5 2.25 -0.42 0.1764 -1.095 0.3066
6.2 265 6.7 1.67 2.7889 36.5 1332.25 1.48 2.1904 60.955 2.4716
4.6 205 5.1 0.07 0.0049 -23.5 552.25 -0.12 0.0144 -1.645 -0.0084
5.7 200 4.3 1.17 1.3689 -28.5 812.25 -0.92 0.8464 -33.345 -1.0764
4.1 220 5 -0.43 0.1849 -8.5 72.25 -0.22 0.0484 3.655 0.0946
3.3 225 4 -1.23 1.5129 -3.5 12.25 -1.22 1.4884 4.305 1.5006
4.9 230 6.1 0.37 0.1369 1.5 2.25 0.88 0.7744 0.555 0.3256
5.2 250 6.4 0.67 0.4489 21.5 462.25 1.18 1.3924 14.405 0.7906
4 245 5.2 -0.53 0.2809 16.5 272.25 -0.02 0.0004 -8.745 0.0106
Сумма
4.53 228.5 5.22 -2.7E-15 8.321 0 3702.5 -7.1E-15 7.316 52.95 5.054

Рассчитаем конечный вид уравнений прямолинейной регрессии по формуле

yx = 1.262 + 0.014x

yz = 0.924 + 0.69z

Из полученных уравнений рассчитаем выровненные значения результирующего показателя


Среднедушевое потребление деликатесной мясной продукции в год,кг/ чел. Среднегодовая цена продукции по городу, руб./кг Среднедушевое потребление деликатесной мясной продукции в год, кг/ чел. Среднедушевой доход одного жителя города за месяц, тыс. руб./ чел.
4.337 215 4.102 4.6
4.551 230 4.240 4.8
5.052 265 5.552 6.7
4.194 205 4.447 5.1
4.122 200 3.894 4.3
4.408 220 4.378 5
4.480 225 3.687 4
4.551 230 5.138 6.1
4.837 250 5.345 6.4
4.766 245 4.516 5.2

Рассчитаем значение нормированного коэффициента корреляции по формуле:

rxy = 0.301669

rzy = 0.647755

Общая классификация корреляционных связей

сильная, или тесная при коэффициенте корреляции r>0,70;

средняя при 0,50<r<0,69;

умеренная при 0,30<r<0,49;

слабая при 0,20<r<0,29;

очень слабая при r<0,19.

Следовательно, связь между Среднегодовой ценой продукции по городу и Среднедушевым потреблением деликатесной мясной продукции в год (rxy = 0,301669) умеренная.

Связь между Среднедушевым доход одного жителя города за месяц и Среднедушевым потреблением деликатесной мясной продукции в год (rzy = 0,647755) средняя.

Критическое значение коэффициента корреляции ккрит=0,72, так как рассчитанные значения меньше критического, предположение о том что зависимость достоверная ложно.

Задание №14

По данным табл. 14 определить: 1) основные параметры вариационного ряда (среднее арифметическое, среднее линейное отклонение, дисперсию, среднее квадратическое отклонение и коэффициент вариации), сделать вывод об однородности совокупности данных и следствии из него; 2) графически изобразить вариационный ряд и определить аналитический вид распределения частот (или частостей); 3) рассчитать теоретические частоты (частости) по предполагаемому аналитическому уравнению и построить полигон распределения теоретических частот (частостей) на предыдущем графике.

Таблица 14

Количество поставщиков основного сырья на предприятие Число предприятий
1 4
2 6
3 10
4 12
5 13
6 11
8 7
9 8
11 5
14 4

Решение:

Среднее арифметическое рассчитаем по формуле среднего арифметического взвешенного:

Среднее линейное отклонение (средний модуль отклонения) от среднего арифметического. Среднее линейное отклонение рассчитывается по формуле: