- . прибыль предприятия торговли имеет сильную обратную связь с расходами предприятия на рекламу и продвижение товаров на рынок (0,4≤0,96≤1) и слабую прямую связь с расходами на обучение и повышение квалификации персонала (0,22≤0,4);
- между объемом товарооборота предприятия торговли и расходами предприятия на рекламу и продвижение товаров на рынок существует обратная средней тесноты связь;
- Rxu = 0,8 корреляция между расходами предприятия на рекламу и продвижение товаров на рынок и объемом товарооборота предприятия торговли;
Rxz = -0,96 корреляция расходами предприятия на рекламу и продвижение товаров на рынок и прибылью предприятия.
Задача 2. Однофакторный дисперсионный анализ
При уровне значимости a=0.05 определите статистическую достоверность влияния фактора А на динамику величины Х.
№ испытания | A1 | A2 | A3 | A4 |
1 | 2 | 2 | 6 | 7 |
2 | 0 | 13 | 8 | 11 |
3 | 14 | 13 | 10 | 2 |
4 | 11 | 5 | 9 | 5 |
5 | 1 | 12 | 4 | 6 |
6 | 7 | 4 | 8 |
РЕШЕНИЕ
Число выборок m=6, значения во всех выборках n=22
№ испытания | A1 | A2 | A3 | A4 | Σ | n |
1 | 2 | 2 | 6 | 7 | 17 | 4 |
2 | 0 | 13 | 8 | 11 | 32 | 3 |
3 | 14 | 13 | 10 | 2 | 39 | 4 |
4 | 11 | 5 | 9 | 5 | 30 | 4 |
5 | 1 | 12 | 4 | 6 | 23 | 4 |
6 | 7 | 4 | 8 | 19 | 3 |
Выборочное среднее:
Сумма квадратов отклонений выборочных средних
от общего среднего (сумма квадратов отклонений между группами):Сумма квадратов отклонений наблюдаемых значений
от выборочной средней (сумма квадратов отклонений внутри групп):Общая сумма квадратов отклонений наблюдаемых значений
от общего среднего№ | А ср. | А ср.2 | А ср.2 * n |
1 | 4,25 | 18,0625 | 72,25 |
2 | 10,66667 | 113,7778 | 341,3333 |
3 | 9,75 | 95,0625 | 380,25 |
4 | 7,5 | 56,25 | 225 |
5 | 5,75 | 33,0625 | 132,25 |
6 | 6,333333 | 40,11111 | 120,3333 |
Σ | 7,272727 | 1271,417 |
Тогда Q = 330,36
Q1 = 107,18
Q2 = Q – Q1 = 222,58
В качестве критерия необходимо воспользоваться критерием Фишера:
F = 1,549
Табличное значение критерия Фишера для заданном уровне значимости 0,05 равен 3,8564.
Так как расчетное значение критерия Фишера меньше табличного, нет оснований считать, что независимый фактор оказывает влияние на разброс средних значений.
Задача 3. Двухфакторный дисперсионный анализ
При уровне значимости a=0.05 определите статистическую достоверность влияния фактора А и фактора В на динамику величины Х.
B1 | B2 | B3 | B4 | |
A1 | 3 | 3 | 12 | 20 |
A2 | 7 | 10 | 18 | 7 |
A3 | 7 | 15 | 6 | 17 |
A4 | 5 | 18 | 0 | 18 |
A5 | 8 | 10 | 8 | 9 |
РЕШЕНИЕ
При двухфакторном дисперсионном анализе изучается влияние, которое оказывают два качественных признака (факторы A и B ) на некоторый количественный результат (отклик). Весьма типична ситуация, когда второй фактор (фактор B) является мешающим: он включается в рассмотрение по той причине, что мешает обнаружить и оценить влияние фактора A.
Пусть фактор A имеет k уровней A1, ..., Ak, а фактор B - n уровней B1,...,Bn . Предполагается, что измеряемая величина x есть результат действия факторов A и B и случайной составляющей e :
Принимается аддитивная и независимая модель действия факторов:
причем ,Последние два условия всегда можно выполнить смещением величин aj и bi и изменением величины c; величины aj и bi называются вкладами факторов.
Проведем двухфакторный дисперсионный анализ при помощи пакета анализа программы Excel:
ИТОГИ | Счет | Сумма | Среднее | Дисперсия |
A1 | 4 | 38 | 9,5 | 67 |
A2 | 4 | 42 | 10,5 | 27 |
A3 | 4 | 45 | 11,25 | 30,91666667 |
A4 | 4 | 41 | 10,25 | 84,25 |
A5 | 4 | 35 | 8,75 | 0,916666667 |
B1 | 5 | 30 | 6 | 4 |
B2 | 5 | 56 | 11,2 | 32,7 |
B3 | 5 | 44 | 8,8 | 45,2 |
B4 | 5 | 71 | 14,2 | 33,7 |
Дисперсионный анализ | ||||||
Источник вариации | Сумма квадратов отклонений | Степени свободы | Среднеквадратическое отклонение | Отношение ср.кв.откл. фактора к ср.кв.откл. погрешности | P-Значение | F критическое |
А | 14,7 | 4 | 3,675 | 0,0985 | 0,9809 | 3,259 |
В | 182,55 | 3 | 60,85 | 1,631 | 0,2343 | 3,49 |
Погрешность | 447,7 | 12 | 37,308 | |||
Итого | 644,95 | 19 |
Так как расчетное значение 0,98 и 0,23 больше заданного уровня значимости независимый фактор оказывает существенное влияние на разброс средних значений.
Задача 4. Регрессионный анализ
Построить регрессионную модель и провести полный регрессионный анализ.
X 5.4 2.7 3.1 8.1 5.3 |
Y 0.0 -1.3 -1.1 1.4 -0.6 |
РЕШЕНИЕ
Построим диаграмму и добавим линию тренда для того чтобы определить коэффициенты регрессия и значение достоверности аппроксимации:
Дальнейшее исследование выполним при помощи пакета анализа программы Excel:
ВЫВОД ИТОГОВ | |
Регрессионная статистика | |
Множественный R | 0,97 |
R-квадрат | 0,94 |
Нормированный R-квадрат | 0,91 |
Стандартная ошибка | 0,36 |
Наблюдения | 4,00 |
Дисперсионный анализ | |||||
df | SS | MS | F | Значимость F | |
Регрессия | 1,00 | 4,31 | 4,31 | 32,55 | 0,03 |
Остаток | 2,00 | 0,27 | 0,13 | ||
Итого | 3,00 | 4,58 |
Коэффициенты | Стандартная ошибка | t-статистика | P-Значение | |
Y-пересечение | -2,72 | 0,45 | -6,11 | 0,03 |
5,4 | 0,48 | 0,08 | 5,71 | 0,03 |
Уравнение регрессии полученное с помощью Excel, имеет вид:
у = 0,4865х – 2,7138
По данным регрессионного анализа можно сказать:
- т.к. коэффициент детерминации равен 0,94, то вариация результата на 94% объясняется вариацией факторов.
- F-критерий равен 32,55, его табличное значение 3,98. т.к. фактическое значение превышает табличное, то делаем вывод, что полученной уравнение регрессии статистически значимо.
Задание №5
Предприятия мясной промышленности сгруппированы по числу видов производимой колбасной продукции. По данным табл. 5 (за отчётный год) определить: а) модальное, медианное и среднее значение числа видов производимой продукции; б) среднюю в целом по совокупности предприятий энергоёмкость продукции; в) среднюю себестоимость 1 т колбасных изделий по совокупности предприятий.
Таблица 5
Число видов производимой колбасной продукции | Число предприятий в группе | Суммарный объём выпуска колбасной продукции по группе предприятий, т | Средняя энергоёмкость 1 т продукции по группе предприятий, ГДж/ т | Средняя себестоимость 1 т продукции по группе предприятий, тыс. руб./ т |
До 4 | 11 | 580 | 6,2 | 86 |
5 – 7 | 11 | 520 | 6,5 | 91 |
8 – 10 | 14 | 610 | 6,3 | 87 |
11 – 13 | 13 | 480 | 6,6 | 93 |
14 – 16 | 5 | 210 | 6,9 | 96 |
17 и более | 6 | 300 | 7,1 | 95 |
Решение:
Таблица 5.1
Число видов производимой колбасной продукции | Число предприятий в группе | Накопленная частота | Закрытые интервалы группы | Серединаинтервала |
До 4 | 11 | 11 | 1 - 4 | 2.5 |
5 – 7 | 11 | 22 | 5 – 7 | 6 |
8 – 10 | 14 | 36 | 8 – 10 | 9 |
11 – 13 | 13 | 49 | 11 – 13 | 12 |
14 – 16 | 5 | 54 | 14 – 16 | 15 |
17 и более | 6 | 60 | 17 - 19 | 18 |
Σ | 60 |
Модой называется величина признака (вариант), которая чаще всего встречается в статистической совокупности. В вариационном ряду это будет значение показателя, имеющее наибольшую частоту.