Смекни!
smekni.com

Принципы организации государственной статистики (стр. 6 из 8)

Полученная мера вариации называется дисперсией, a корень квадратный из дисперсии - средним квадратическим отклонением. Эти показатели являются общепринятыми мерами вариации и часто используются в статистических иссле­дованиях, а также в технике, биологии и других отраслях зна­ний. Данные показатели нашли также свое широкое применение в международной практике учета и статистического анализа, в частности в системе национального счетоводства.

Дисперсия есть средняя величина квадратов отклонений.

Среднее квадратическое отклонение - это обобщающая харак­теристика размеров вариации признака в совокупности. Оно выражается в тех же единицах измерения, что и признак (в мет­рах,

Различают следующие относительные показате­ли вариации (V):

Наиболее часто в практических расчетах применяется показа­тель относительной вариации - коэффициент вариации

18. Вариация альтернативного признака. Расчет дисперсии по

разным способам.

Среди множества варьирующих признаков, изучаемых ста­тистикой, существуют признаки, которыми обладают одни единицы совокупности и не обладают другие. Эти признаки называются альтернативными. Примером таких признаков яв­ляются: наличие бракованной продукции, ученая степень у пре­подавателя вуза, работа по полученной специальности и т. д. Вариация альтернативного признака количественно прояв­ляется в значении нуля у единиц, которые этим призна­ком не обладают, или единицы у тех, которые данный признак имеют.

Пусть р - доля единиц в совокупности, обладающих данным признаком (р = m/n); q - доля единиц, не обладающих данным признаком, причем р + q = 1. Альтернативный признак принима­ет всего два значения - 0 и 1 с весами соответственно q и р. Исчислим среднее значение альтернативного признака по фор­муле средней арифметической:

Дисперсия альтернативного признака определяется по формуле:

Таким образом, дисперсия альтернативного признака равна произведению доли на дополняющее эту долю до единицы чис­ло. Корень квадратный из этого показателя соответ­ствует среднему квадратическому отклонению альтернативного признака.

Показатели вариации альтернативных признаков широко ис­пользуются в статистике, в частности при проектировании выбо­рочного наблюдения, обработке данных социологических обсле­дований, статистическом контроле качества продукции, в ряде других случаев.

19. Правило сложения дисперсий. Дисперсионный факторный

анализ.

Бывает необходимо проследить количественные изменения признака по группам, на которые разделяется сово­купность, а также и между группами. Такое изучение вариации достигается посредством вычисления и анализа различных ви­дов дисперсии.

Выделяют дисперсию общую, межгрупповую и внутригрупповую. Общая дисперсия измеряет вариацию признака во всей совокупности под влиянием всех факторов, обусловивших эту вариацию:

Существует закон, связывающий три вида дисперсии. Общая дисперсия равна сумме средней из внутригрупповых и межгруп­повой дисперсий:

Данное соотношение называют правилом сложения диспер­сий. Согласно этому правилу, общая дисперсия, возникающая под действием всех факторов, равна сумме дисперсии, появляющей­ся под влиянием всех прочих факторов, и дисперсии, возникаю­щей за счет группировочного признака.

Зная любые два вида дисперсий, можно определить или про­верить правильность расчета третьего вида.

20. Динамический ряд, его элементы. Виды рядов динамики.

Правила построения динамических рядов

Ряд динамики (или динамический ряд) представляет собой ряд расположенных в хронологической последовательности чи­словых значений статистического показателя, характеризующих изменение общественных явлений во времени.

В каждом ряду динамики имеются два основных элемента: время t и конкретное значение показателя (уровень ряда) у.

Уровни ряда это показатели, числовые значения которых составляют динамический ряд. Время — это моменты или перио­ды, к которым относятся уровни.

Построение и анализ рядов динамики позволяют выявить и измерить закономерности развития общественных явлений во времени. Эти закономерности не проявляются четко на каждом конкретном уровне, а лишь в тенденции, в достаточно дли­тельной динамике. На основную закономерность динамики на­кладываются другие, прежде всего случайные, иногда сезонные влияния. Выявление основной тенденции в изменении уров­ней, именуемой трендом, является одной из главных задач ана­лиза рядов динамики.

По времени, отраженному в динамических рядах, они разде­ляются на моментные и интервальные.

Моментным рядом динамики называется такой ряд, уровни которого характеризуют состояние явления на определенные да­ты (моменты времени).

Интервальным (периодическим) рядом динамики называется такой ряд, уровни которого характеризуют размер явления за конкретный период времени (год, квартал, месяц).

Уровни в динамическом ряду, могут быть представлены абсолютными, средними или относительными величинами.

По расстоянию между уровнями ряды динамики подразде­ляются на ряды с равностоящими и неравностоящими уровнями по времени

При построении динамических рядов необходимо соблюдать определенные правила: основным условием для получения пра­вильных выводов при анализе рядов динамики и прогнозирова­нии его уровней является сопоставимость уровней динамиче­ского ряда между собой.

Статистические данные должны быть сопоставимы по территории, кругу охватываемых объектов, единицам изме­рения, времени регистрации, ценам, методологии расчета и др.

Сопоставимость по территории предполагает одни и те же границы территории.

Сопоставимость по кругу охватываемых объектов означа­ет сравнение совокупностей с равным числом элементов.

При этом нужно иметь в виду, что сопоставляемые показате­ли динамического ряда должны быть однородны по экономиче­скому содержанию и границам объекта, который они характеризуют (однородность может быть обеспечена одинаковой полно­той охвата разных частей явления).

Сопоставимость по времени регистрации для интервальных рядов обеспечивается равенством периодов времени, за которые приводятся данные.

Сопоставимость по ценам. При проведении к сопостави­мому виду продукции, измеренной в стоимостных (ценностных) показателях, трудность заключается в том, что, во-первых, с те­чением времени происходит непрерывное изменение цен, а во-вторых, существует несколько видов цен.

Сопоставимость по методологии расчета. При определе­нии уровней динамического ряда необходимо использовать еди­ную методологию их расчета.

21. Показатели анализа ряда динамики. Средние показатели ряда

динамики.

Анализ интенсивности изменения во времени осуществляет­ся с помощью показателей, получаемых в результате сравнения уровней, к таким показателям относятся: абсолютный прирост, темп роста, темп прироста, абсолютное значение одного процен­та прироста.

Система средних показателей включает средний уровень ря­да, средний абсолютный прирост, средний темп роста, средний темп прироста.

Показатели анализа динамики могут вычисляться на посто­янной и переменных базах сравнения. При этом принято назы­вать сравниваемый уровень отчетным, а уровень, с которым производится сравнение, — базисным.

Для расчета показателей анализа динамики на постоянной базе каждый уровень рада сравнивается с одним и тем же ба­зисным уровнем. В качестве базисного выбирается либо началь­ный уровень в раду динамики, либо уровень, с которого начи­нается какой-то новый этап развития явления. Исчисляемые при этом показатели называются базисными.

Для расчета показателей анализа динамики на переменной базе каждый последующий уровень рада сравнивается с преды­дущим. Вычисленные таким образом показатели анализа дина­мики называются цепными.

Важнейшим статистическим показателем анализа динамики яв­ляется абсолютный прирост (сокращение), т.е. абсолютное изменение, характеризующее увеличение или уменьшение уровня рада за оп­ределенный промежуток времени. Абсолютный прирост с пере­менной базой называют скоростью роста.

Цепные и базисные абсолютные приросты связаны между собой: сумма последовательных цепных абсолютных приростов равна базисному, т. е. общему приросту за весь промежуток времени.

Для обобщающей характеристики динамики исследуемого явления определяют средние показатели: средние уровни ряда и средние показатели изменения уровней ряда.

Средний уровень ряда характеризует обобщённую вели­чину абсолютных уровней. Он рассчитывается по средней хро­нологической, т. е. по средней исчисленной из значений, изме­няющихся во времени.