Смекни!
smekni.com

Особенности применения вариационных рядов в статистике (стр. 1 из 3)

Оглавление

Введение

1. Статистические ряды распределения, их значение и применение в статистике

2. Расчетная часть

3. Аналитическая часть

Заключение

Список использованной литературы


Введение

С незапамятных времен человечество осуществляло учет многих сопутствующих его жизнедеятельности явлений и предметов и связанные с ним вычисления. Люди получали разносторонние, хотя и различающиеся полнотой на различных этапах общественного развития. Данные, учитывавшиеся повседневно в процессе принятия хозяйственных решений, а в обобщенном виде и на государственном уровне при определении русла экономической и социальной политики и характера внешнеполитической деятельности.

Руководствуясь соображениями зависимости благосостояния нации от величины создаваемого полезного продукта, интересов стратегической безопасности государств и народов от численности взрослого мужского населения, доходов казны от размера налогооблагаемых ресурсов и т. д., издавна отчетливо осознавалась и реализовывалась в форме различных учетных акций.

С учетом достижений экономической науки стал возможен расчет показателей, обобщенно характеризующих результаты воспроизводственного процесса на уровне общества: совокупного общественного продукта, национального дохода, валового национального продукта.

Всю перечисленную информацию в постоянно возрастающих объемах предоставляет обществу статистика, являющаяся необходимо принадлежностью государственного аппарата. Статистические данные, таким образом, способны сказать языком статистических показателей о многом в весьма яркой и убедительной форме.

Для статистического анализа данных в своей работе я использовала программу Excel (расчет формул и построение графиков).


Статистические ряды распределения, их значение и применение в статистике

В результате обработки и систематизации первичных данных статистического наблюдения получают группировки, называемые рядами распределения. В них известна численность единиц наблюдения в группах. Представленная в абсолютном и относительном выражении.

Статистический ряд распределения представляет собой упорядоченное распределение единиц изучаемой совокупности на группы по определенному варьирующему признаку. Он характеризует состав (структуру) изучаемого явления, позволяет судить об однородности совокупности, закономерности распределения и границах варьирования единиц совокупности.

Статистические ряды подразделяются на:

Атрибутивные – это ряды, построенные по атрибутивным признакам, в порядке возрастания или убывания наблюдаемых знаний.

То есть качественным признакам, не имеющим числового выражения и характеризующим свойство, качество изучаемого социально-экономического явления.

Атрибутивные ряды распределения характеризуют состав совокупности по тем или иным существенным признакам.

Взятые за несколько периодов, эти данные позволяют исследовать изменение структуры.

Число групп атрибутивного ряда распределения адекватно числу градаций. Разновидностей атрибутивного признака.

Пример атрибутивного ряда распределения приведен в таблице 1.

Таблица 1. Распределение студентов 1-го курса по успеваемости

Успеваемость Число студентов, чел Удельный вес в общей численности студентов. %

Успевают

46 92
Не успевают 4 8
Итого: 50 100

Элементами данного ряда распределения являются градации атрибутивного признака «Успеваемость» («успевают» - «не успевают») и численность каждой группы в абсолютном (человек) и относительном (%) выражении.

Студентов, сдавших экзамен по дисциплине, было 46 человек. Их удельный вес составил 92%.

Вариационные – это ряды, построенные по количественному признаку.

Вариационные ряды распределения состоят из двух элементов: вариантов и частот:

- варианты – это числовые значения количественного признака в вариационном ряду распределения. Они могут быть положительными и отрицательными, абсолютными и относительными. Так, при группировке предприятий по результатам хозяйственной деятельности варианты положительные – это прибыль, а отрицательные числа – это убыток.

- частоты – это численности отдельных вариантов или каждой группы вариационного ряда, т.е. это числа, показывающие, как часто встречаются те или иные варианты в ряду распределения. Сумма всех частот называется объемом совокупности и определяется числом элементов всей совокупности.

- частости – это частоты, выраженные в виде относительных величин (долях единиц или процентах). Сумма частостей равна единице или 100%. Замена частот частостями позволяет сопоставлять вариационные ряды с разным числом наблюдений.

Вариационные ряды в зависимости от характера вариации подразделяются на дискретные и интервальные.

Дискретный вариационный ряд распределения – это ряд, в котором группы составлены по признаку, изменяющемуся дискретно и принимающему только целые значения.

Пример дискретного вариационного ряда распределения приведен в таблице 2.

Таблица 2. Распределение студентов по экзаменационному баллу

Экзаменационный балл Число студентов, чел. Удельный вес студентов, в % к итогу
1 2 3
5 16 32
4 23 46
3 7 14
2 4 8
Итого: 50 100

В гр. 1 таблицы 2 представлены варианты дискретного вариационного ряда. В гр. 2 – частоты, а в гр. 3 – частости. В случае непрерывной вариации величина признака у единиц совокупности может принимать в определенным пределах любые значения. Отличающиеся друг от друга на сколь угодно малую величину.

Интервальный вариационный ряд распределения – это ряд, в котором группировочный признак, составляющий основание группировки, может принимать в определенном интервале любые значения, в том числе и дробные.

Интервальный ряд распределения целесообразно строить, прежде всего, при непрерывной вариации признака, а также, если дискретная вариация проявляется в широких пределах, т.е. число вариантов дискретного признака достаточно велико.

Правила и принципы построения интервальных рядов распределения аналогичны правилам и принципам построения статистических группировок. В случае, если интервальный вариационный ряд распределения построен с равными интервалами, частоты позволяют судить о степени заполнения интервала единицами совокупности. При построении неравных интервалов нельзя получить информацию о степени заполнения каждого интервала. С целью проведения сравнительного анализа заполненности интервалов определяется показатель, характеризующий плотность распределения. Это отношение числа единиц совокупности к ширине интервала.

Пример интервального вариационного рада распределения приведен в таблице 3.

Таблица 3. Распределение строительных фирм региона по среднесписочной численности работающих*

Численность работающих, чел. Число строительных фирм Удельный вес, в % к итогу
100 – 200 12 15,00
200 – 300 18 22,50
300 – 400 25 31,25
400 – 500 14 17,50
500 – 600 11 13,75
Итого: 80 100,00

* - Цифры условные

Представленный ряд распределения является интервальным, в основании образования групп которого лежит непрерывный признак.

Анализ рядов распределения можно для наглядности проводить на основе их графического изображения. Для этой цели строят полигон, гистограмму, огиву и кумуляту распределения.


Расчетная часть задания № 5

Имеются выборочные данные (выборка 5%-я механическая) о среднегодовой стоимости основных производственных фондов и выпуске продукции предприятий отрасли экономики за отчетный период.

Таблица 4. Исходные данные

№ п/п Среднегодовая стоимость ОПФ, млн. руб. Выпуск продукции, млн. руб.
1 27 21
2 46 27
3 33 41
4 35 30
5 41 47
6 42 42
7 53 34
8 55 57
9 60 46
10 46 48
11 39 45
12 45 43
13 57 48
14 56 60
15 36 35
16 47 40
17 20 24
18 29 36
19 26 19
20 49 39
21 38 35
22 37 34
23 56 61
24 49 50
25 37 38
26 33 30
27 55 51
28 44 46
29 41 38
30 28 35

По исходным данным:

1. Постройте статистический ряд распределения предприятий по среднегодовой стоимости основных производственных фондов, образовав четыре группы предприятий с равными интервалами, охарактеризовав их числом предприятий и удельным весом предприятий.

2. Рассчитайте обобщающие показатели ряда распределения:

а) среднегодовую стоимость основных производственных фондов, взвешивая значения признака по абсолютной численности предприятий и их удельному весу;

б) моду и медиану;

в) постройте графики ряда распределения и определите на них значение моды и медианы.