где Y1 и Yn — первый и последний уровни ряда; Yi — промежуточные уровни.
В случае интервального ряда его средний уровень определяется по формуле простой средней арифметической величины как
= (1.50)
Среднее изменение уровней ряда определяется также базисным и цепным способами.
Базисное среднее абсолютное изменение представляет собой частное от деления последнего базисного абсолютного изменения на количество изменений. То есть
Б = (1.51)
Цепное среднее абсолютное изменение уровней ряда представляет собой частное от деления суммы всех цепных абсолютных изменений на количество изменений.
То есть
Ц = (1.52)
По знаку средних абсолютных изменений также судят о характере изменения явления в среднем: рост, спад или стабильность.
Из правила контроля базисных и цепных абсолютных изменений согласно формуле (1.45) следует, что базисное и цепное среднее изменение должны быть равными.
Наряду со средними абсолютным изменением рассчитывается и среднее относительное тоже базисным и цепным способами.
Базисное среднее относительное изменение определяется по формуле
Б= = (1.53)
Цепное среднее относительное изменение определяется по формуле
Ц= (1.54)
Естественно, базисное и цепное среднее относительное изменения должны быть одинаковыми и сравнением их с критериальным значением 1 делается вывод о характере изменения явления в среднем: рост, спад или стабильность.
Вычитанием 1 из базисного или цепного среднего относительного изменения образуется соответствующий средний темп изменения, по знаку которого также можно судить о характере изменения изучаемого явления, отраженного данным рядом динамики.
Всякий ряд динамики теоретически может быть представлен в виде составляющих:
- тренд – основная тенденция развития ряда, обусловливающая увеличение или снижение его уровней;
- циклические (периодические) колебания (в том числе сезонные);
- случайные колебания.
Проверка ряда динамики на наличие в нем тренда возможна несколькими способами (в порядке усложнения):
1. Графический метод, когда на графике по оси абсцисс откладывается время, а по оси ординат – уровни ряда. Соединив полученные точки линиями, в большинстве случаев можно выявить тренд визуально.
2. Метод средних, согласно которому изучаемый ряд динамики делится на два равных подряда, для каждого из которых определяется средняя величина
и . И если они различаются существенно (более 10%), то признается наличие тренда.3. Метод Кокса и Стюарта, согласно которому ряд динамики делится на три равные по числу уровней группы и существенное различие выявляется между средними уровнями первой и третьей групп. Если общее число уровней не делится на три, то надо добавить недостающий уровень или исключить излишний.
4. Метод Валлиса и Мура, согласно которому наличие тренда признается в том случае, если ряд не содержит либо содержит в приемлемом количестве фазы, т.е. перемену знака при определении абсолютного изменения цепным способом.
5. Метод серий, согласно которому каждый уровень ряда считается принадлежащим к одному из двух типов, например типу А – меньше медианного или среднего значения или типу В – больше его. Затем в образовавшейся последовательности типов устанавливается число серий R. Они называются последовательностью уровней одинакового типа, которая граничит с уровнями другого типа. Если в ряду динамики общая тенденция к росту или снижению уровней отсутствует, то число серий является случайной величиной, распределенной приближенно по нормальному закону (при n>30) или по распределению Стьюдента (при n<30). Следовательно, если закономерности в изменениях уровней нет, то случайная величина R оказывается в доверительном интервале
где t – коэффициент доверия для принятого уровня вероятности при нормальном законе или со степенью свободы k = (n - 1) при распределении Стьюдента;
– среднее число серий в ряду, определяемое по формуле: ; – среднее квадратическое отклонение числа серий в ряду, определяемое по формуле .Подставляя среднее число серий и его среднее квадратическое отклонение в доверительный интервал, получим его развернутое значение в виде
.Значит, с заданной вероятностью тренд имеет место, если установленное число серий ряда не входит в доверительный интервал, и тренд отсутствует, если установленное число серий находится в этом интервале.
Этот процесс можно осуществлять тремя способами.
1. Укрупнение интервалов, когда ряд динамики делят на некоторое достаточно большое число равных интервалов. Если интервальные средние уровни не позволяют увидеть тенденцию, то увеличивают размах интервалов, уменьшая одновременно их число.
2. Методом скользящей средней, когда уровни ряда заменяются средними величинами, получаемыми из данного уровня и нескольких симметрично его окружающих уровней. Такие средние называются интервалом сглаживания. Он может быть нечетным (3, 5, 7 и т.д. уровней) или четным (2, 4, 6 и т.д. уровней). Чаще применяется нечетный интервал, потому что сглаживание идет проще. При этом формулы для расчета скользящей средней величины имеют вид
; .Недостаток метода скользящей средней заключается в условности определения сглаженных значений для уровней в начале и в конце ряда. Получают их по специальным формулам. Так, при сглаживании по трем уровням условное значение первого уровня нового ряда рассчитывается по формуле
Для уровня в конце нового ряда при таком сглаживании формула аналогична:
.При сглаживании по пяти уровням условными оказываются по два уровня в начале и в конце нового ряда. Первое условное значение определяется по формуле
,а второе – по формуле
.Для двух уровней в конце нового ряда при таком сглаживании формулы аналогичны. Так, последнее расчетное значение определяется по формуле
,а предпоследнее значение по формуле
.3. Метод аналитического выравнивания, под которым понимается формализация основной, проявляющейся во времени тенденции развития изучаемого явления. В итоге получают наиболее общий результат действия всех причинных факторов, а отклонение конкретных уровней ряда от формализованных значений объясняют действием фактов, проявляющихся случайно или циклически. В результате приходят к трендовой модели вида
, (1.55)где
– математическая функция развития; – случайное или циклическое отклонение от функции; t – время в виде номера периода (уровня ряда). Цель такого метода – выбор теоретической зависимости в качестве одной из функций: – прямая линия; – гипербола; – парабола; – степенная;