где
– нормированное отклонение выборочной средней от генеральной средней.Значения интеграла Лапласа для разных t рассчитаны и имеются в специальных таблицах, из которых в статистике широко применяется сочетание:
Вероятность | 0,683 | 0,866 | 0,950 | 0,954 | 0,988 | 0,990 | 0,997 | 0,999 |
t | 1 | 1,5 | 1,96 | 2 | 2,5 | 2,58 | 3 | 3,5 |
Задавшись конкретным уровнем вероятности, выбирают величину нормированного отклонения t и определяют предельную ошибку выборки по формуле (1.38)
При этом чаще всего применяют
= 0,95 и t = 1,96, т.е. считают, что с вероятностью 95% предельная ошибка выборки вдвое больше средней. Поэтому в статистике величина t иногда именуется коэффициентом кратности предельной ошибки относительно средней.После исчисления предельной ошибки находят доверительный интервал обобщающей характеристики генеральной совокупности. Такой интервал для генеральной средней величины имеет вид
( - ) ( + ), (1.39)
а для генеральной доли аналогично
(w- ) p (w + ). (1.40)
Следовательно, при выборочном наблюдении определяется не одно, точное значение обобщающей характеристики генеральной совокупности, а лишь ее доверительный интервал с заданным уровнем вероятности. И это серьезный недостаток выборочного метода статистики.
Разрабатывая программу выборочного наблюдения, иногда задаются конкретным значением предельной ошибки с уровнем вероятности. Неизвестной остается минимальная численность выборки, обеспечивающая заданную точность. Ее можно получить из формул средней и предельной ошибок в зависимости от типа выборки. Так, подставляя формулы сначала (1.35) и затем (1.36) в формулу (1.38) и решая ее относительно численности выборки, получим следующие формулы
для повторной выборки
n =
; (1.41)для бесповторной выборки
n =
. (1.42)Кроме того, при статистических величинах с количественными признаками надо знать и выборочную дисперсию, но к началу расчетов и она не известна. Поэтому она принимается приближенно одним из следующих способов:
—берется из предыдущих выборочных наблюдений;
—по правилу, согласно которому в размахе вариации укладывается примерно шесть стандартных отклонений (R/ = 6 или R/
= 6; отсюда Д = R2 /36);— по правилу «трех сигм», согласно которому в средней величине укладывается примерно три стандартных отклонения (
/ =3; отсюда = /3 или Д = 2/9).При изучении не численных признаков, если даже нет приблизительных сведений о выборочной доле, принимается w = 0,5, что по формуле (1.37) соответствует выборочной дисперсии в размере Дв = 0,5(1-0,5) = 0,25.
Ряд динамики — это последовательность упорядоченных во времени количественных статистических величин, характеризующих развитие изучаемого явления или процесса. Конкретное значение величины называется уровнем ряда и обозначается Y, а их число в ряду обозначается n. Ряды динамики классифицируются по следующим признакам.
1. По времени — ряды моментные и интервальные (периодные) которые показывают уровень явления на конкретный момент времени или на определенный его период. Сумма уровней интервального ряда дает вполне реальную статистическую величину за несколько периодов времени, например, общий выпуск продукции, общее количество проданных акций и т.п. Уровни моментного ряда, хотя и можно суммировать, но эта сумма реального содержания, как правило, не имеет. Так, если сложить величины запасов на начало каждого месяца квартала, то полученная сумма не означает квартальную величину запасов.
2. По форме представления — ряды абсолютных, относительных и средних величин.
3. По интервалам времени — ряды равномерные и неравномерные (полные и неполные), первые из которых имеют равные интервалы, а у вторых равенство интервалов не соблюдается.
4. По числу смысловых статистических величин — ряды изолированные и комплексные (одномерные и многомерные). Первые представляют собой ряд динамики одной статистической величины (например, индекс инфляции), а вторые — нескольких (например, потребление основных продуктов питания).
Система уровней ряда аналогична системе дискретных статистических величин X. По-прежнему вычисляются абсолютное, относительное изменения, среднее значение, а также соответствующие индексы и темпы изменения по единичным и средним значениям. Используются те же формулы средних величин от простой арифметической до геометрической.
Любое изменение уровней ряда определяется базисным и цепным способами.
Базисное абсолютное изменение представляет собой разность конкретного и первого уровней ряда, определяясь по формуле
(1.43)
Цепное абсолютное изменение представляет собой разность конкретного и предыдущего уровней ряда, определяясь по формуле
(1.44)
По знаку абсолютного изменения делается вывод о характере развития явления: при
> 0 — рост, при < 0 — спад, при = 0 — стабильность.Для проверки правильности расчетов применяется правило, согласно которому сумма цепных абсолютных изменений равняется последнему базисному. То есть
(1.45)
где к = n-1 — количество изменений уровней ряда (r = 1 ...к).
Базисное относительное изменение представляет собой соотношение конкретного и первого уровней ряда, определяясь по формуле
(1.46)
Цепное относительное изменение представляет собой соотношение конкретного и предыдущего уровней ряда, определяясь по формуле
(1.47)
Относительные изменения уровней — это по существу индексы динамики, критериальным значением которых служит 1. Если они больше ее, имеет место рост явления, меньше ее — спад, а при равенстве единице наблюдается стабильность явления.
Вычитая единицу из относительных изменений, получают темп изменения уровней, критериальным значением которого служит 0. При положительном темпе изменения имеет место рост явления, при отрицательном — спад, а при нулевом темпе изменения наблюдается стабильность явления.
Для проверки правильности расчетов применяется правило, согласно которому произведение цепных относительных изменений равняется последнему базисному.
То есть
(1.48)
Способ расчета среднего уровня зависит от того, моментный ряд или интервальный. При моментном ряде применяется формула средней хронологической величины (1.17), но при соответствующих обозначениях имеющая вид
= , (1.49)