å уx = b0 å x + b1 * å x2
Расчетные данные для решения системы нормальных уравнений приведены в таблице 1.
Подставив значения переменных из таблицы, получим систему уравнений:
199 = 22 * b0 + b1 * 692056160 = 6920* b0 + b1 * 2305600
После решения системы уравнений имеем:
у = 24,8 – 0,05х
Таблица 7
№ п/п | у | х | Yх | x2 | у2 | i |
1 | 16 | 240 | 3840 | 57600 | 256 | 12,8 |
2 | 8 | 330 | 2640 | 108900 | 64 | 8,3 |
3 | 6 | 380 | 2280 | 144400 | 36 | 5,8 |
4 | 3 | 420 | 1260 | 176400 | 9 | 3,8 |
5 | 7 | 400 | 2800 | 160000 | 49 | 4,8 |
6 | 4 | 330 | 1320 | 108900 | 16 | 8,3 |
7 | 10 | 280 | 2800 | 78400 | 100 | 10,8 |
8 | 12 | 260 | 3120 | 67600 | 144 | 11,8 |
9 | 5 | 400 | 2000 | 160000 | 25 | 4,8 |
10 | 14 | 160 | 2240 | 25600 | 196 | 16,8 |
11 | 7 | 380 | 2660 | 144400 | 49 | 5,8 |
12 | 9 | 260 | 2340 | 67600 | 81 | 11,8 |
13 | 7 | 340 | 2380 | 115600 | 49 | 7,8 |
14 | 15 | 220 | 3300 | 48400 | 225 | 13,8 |
15 | 10 | 280 | 2800 | 78400 | 100 | 10,8 |
16 | 12 | 300 | 3600 | 90000 | 144 | 9,8 |
17 | 8 | 320 | 2560 | 102400 | 64 | 8,8 |
18 | 4 | 410 | 1640 | 168100 | 16 | 4,3 |
19 | 2 | 460 | 920 | 211600 | 4 | 1,8 |
20 | 10 | 270 | 2700 | 72900 | 100 | 11,3 |
21 | 12 | 280 | 3360 | 78400 | 144 | 10,8 |
22 | 18 | 200 | 3600 | 40000 | 324 | 14,8 |
199 | 6920 | 56160 | 2305600 | 2195 |
При увеличении объема производства, себестоимость единицы продукции снижается в среднем на 0,05 гр. На основании уравнения регрессии вычисляем теоретическое значение «у» для всех элементов совокупности.
Например:
у1 = 24,8 – 0,05 * 240 = 12,8;
Коэффициент корреляции определяем по формуле:
r = (n * å уx - å x * å у) / Ö(n * åх2 – (å x)2 ) * (n * åу2 – (å у)2 )где х – факторный признак;
у – результативный признак;
n – 22 шт.
Подставим значения из таблицы 7 получим, что коэффициент корреляции :
r = (22 * 56160 - 6920 * 199) / Ö(22 * 2305600 – 47886400) * (22 * 2195 – 39601) = -0,9;
Значение коэффициента корреляции отрицательное (-0,9), следовательно, зависимость – обратно пропорциональная.
Чем ближе коэффициент корреляции по абсолютной величине к единице, тем теснее корреляционная зависимость.
-1 < r < 1
В нашем случае r = -0,9 – это свидетельствует о достаточно тесной зависимости факторного и результативного признаков.
Литература
1. Елисеева И.И., Юзбашев М.М. Общая теория статистики: Учебник. – М.: Финансы и статистика, 1995. – 310 с.
2. Ефимова М.Р., Петрова Е.В., Румянцев В.Н. Общая теория статистики: Учебник. – М.: ИНФРА-М, 2006. – 280 с.
3. Практика по теории статистики. Под ред. Проф. Шмойловой Л.А. М.: Финансы и статистика, 2007.