Смекни!
smekni.com

Корреляционно-регрессионный анализ (стр. 3 из 5)

Если tн>t, то нулевую гипотезу отвергаем, значит есть явления гетероскеластичности, в противном случае явление гетероскедастичности наблюдаем. В случае наличия гетероскедастичности, используя ОМНК оценим

регрессию, взяв в качестве матрицы Ω=

Проверим наличие гетероскедастичности по переменной Х7

rang xi rang ei Di Di2
21.3 69.2 77.9 17.1 18.4 37.9 72.2 27.5 58.2 46.2 74 43.5 18.8 59.5 52.2 65.1 60.2 2.63 84 19.8 78.7 62 104 69.3 78.9 15.1 51.5 84.98 30.58 38.42 60.34 60.22 60.79 29.82 70.57 34.51 64.73 36.63 32.84 62.64 34.07 39.27 28.46 30.27 69.04 25.42 53.13 28.00 38.79 32.04 38.58 18.51 57.62 20.80 -0.917 2.18 0.808 -5 -7.52 -17.5 7.55 -10.2 11.5 -21.7 2.23 0.909 -7.49 19.7 4.75 -10.3 11.9 10.8 -4.14 -8.63 -6.32 -13.4 -3.89 -5.4 -1.42 19.6 32 2,5 19,5 24 4,5 2,5 8,5 18 8,5 14 11 21 10 7 12,5 12,5 16 19,5 4,5 26 6 22 16 27 23 25 1 16 15 18 16 11 7 2 21 5 23 1 19 17 8 26 20 4 24 22 12 6 9 3 13 10 14 25 27 -15 -18 8 -11 -7 -2 -3 -5 -9 10 2 -7 -1 -26 -20 12 -24 -22 14 0 13 13 14 13 11 -24 -11 225 324 64 121 49 4 9 25 81 100 4 49 1 676 400 144 576 484 196 0 169 169 196 169 121 576 121

Приведем график зависимости регрессионных остатков
от изменения признака Х7.

По оси ординат (У) отражено значение остатков , по оси абсцисс (х) значение признака. Как видно визуально гетероскедастичность отсутствует.

Ранговый коэффициент корреляции будет Rx,e= 0,0681, t=
Rх.е =-0,3472 0,3472<1.96 , следовательно согласно критерию гетероскедастичность линейного вида отсутствует.

Проверим наличие гетероскедастичности по переменной Х9

rang xi rang ei Di Di2
21.3 69.2 77.9 17.1 18.4 37.9 72.2 27.5 58.2 46.2 74 43.5 18.8 59.5 52.2 65.1 60.2 2.63 84 19.8 78.7 62 104 69.3 78.9 15.1 51.5 84.98 30.58 38.42 60.34 60.22 60.79 29.82 70.57 34.51 64.73 36.63 32.84 62.64 34.07 39.27 28.46 30.27 69.04 25.42 53.13 28.00 38.79 32.04 38.58 18.51 57.62 20.80 -0.917 2.18 0.808 -5 -7.52 -17.5 7.55 -10.2 11.5 -21.7 2.23 0.909 -7.49 19.7 4.75 -10.3 11.9 10.8 -4.14 -8.63 -6.32 -13.4 -3.89 -5.4 -1.42 19.6 32 21 10 5 25 22,5 20 2,5 26 11 15 4 16 24 6,5 13 2,5 18 27 6,5 22,5 1 8 14 12 9 17 19 15 18 16 11 7 2 21 5 23 1 19 17 8 26 20 4 24 22 12 6 9 3 13 10 14 25 27 6 -8 -11 14 -7 18 -21 21 -12 14 -15 -1 16 -26 -7 -4 -6 5 -12 -6 -8 5 1 2 -5 -8 -8 36 64 121 196 49 324 441 441 144 196 225 1 256 676 49 16 36 25 144 36 64 25 1 4 25 64 64

Приведем график зависимости регрессионных остатков
от изменения признака Х9.

По оси ординат (У) отражено значение остатков , по оси абсцисс (х) значение признака. Как видно визуально гетероскедастичность отсутствует.

Ранговый коэффициент корреляции будет Rx,e= -0,1364, t=
Rх.е =-0,6955 0,6955<1.96 , следовательно согласно критерию гетероскедастичность линейного вида отсутствует.

3. Устранение гетероскедастичности обобщенным методом наименьших квадратов.

Если явление гетероскедастичности наблюдается, то оценки, полученные с помощью МНК, являются смещенными и состоятельными. В этом случае следует использовать ОМНК для построения коэффициентов регрессии: bомнк=(ΧТΩˉ¹X)ˉ¹X ТΩˉ¹Y, где Ω - диагональная матрица, которую необходимо оценить. Тогда оценка регрессии будет иметь вид:Ŷ=Xbомнк. Проверка на значимость уравнения регрессии осуществляется с помощью статистики , распределенной по закону Фишера -Снедокера.

FН=

, где QR=(Xb)ТΩ-1(Хb) , Qост=(У-Хb)ТΩ-1(У-Хb)

Проверка на значимость коэффициентов регрессии осуществляется с помощью статистики, распределенной по закону Стьюдента.

tн=

, где Sbj=Ŝ [ ( XТΩ-1Х)-1] jj
, Ŝ=

Поскольку гетероскедастичности нет ,то нет необходимости применения ОМНК.

4. Исследование модели на наличие автокорреляции.

На практике можно провести примеры, когда построенная регрессионная модель оказывается значимой, дисперсии оценок этой модели малы, но модель оказывается неадекватной описываемому процессу. Причина этого может быть в наличии явления автокорреляции - это явление, заключающееся в том, что значения случайной составляющей в любом наблюдении зависит от его значений во всех других наблюдениях. Если в этом случае проанализировать поведение остатков, то зачастую можно выявить следующие тенденции:

● значения регрессионных остатков в соседних точках оказываются одного знака. В данном случае имеет место положительная автокорреляция.

● значения регрессионных остатков в соседних точках оказываются разного знака (по закономерности ). В этом случае имеет место отрицательная автокорреляция остатков.

Явление автокорреляции по поведению остатков можно выявить, если достаточна частота наблюдений. Автокорреляция выявляется с помощью статистики Дарбина- Уотсона:

d=

Если наличие автокорреляции отсутствует, то значение статистики должно быть близкой к двум. При наличии положительной автокорреляции величина d близка к нулю (меньше двух); при отрицательной автокорреляции она близка к значению 4. Вычисляют верхнюю

и нижнюю
границы для критического значения статистики. Возможны три ситуации:

1) Если d<d

, то делаем вывод о наличии автокорреляции;

2) Если d>d

, то нет автокорреляции;

3) Если d

<d<d
, то в этом случае мы не можем ни принять ни отклонить нулевую гипотезу и анализ осуществляется с помощью нового критерия: d’=4-d.

В случае наличия автокорреляции ее необходимо устранить, т.к построенные оценки коэффициентов регрессии будут смещенными и состоятельными. В литературе большое внимание уделяется зависимости первого порядка между регрессионными остатками:

=
+
, где
<1;
-случайные величины, обладающие свойствоми: М
=0; D
=
, cov[
,
] =0 при i
j т.е. относительно
мы имеем линейную регрессионную гомоскедастичную модель. Наша цель- построить ковариационную матрицу вектора регрессионных остатков, найти ее оценку и построить модель ОМНК. Исследуем случайные величины
:

М
=
М
=0

D
=
, т.е. дисперсия регрессионных остатков постоянная величина.