Смекни!
smekni.com

Индексы и их классификация (стр. 2 из 6)

Индекс физического объема продукции i

рассчитывается по формуле

где

и
- соответственно продукция отчетного и базисного периодов.

В знаменателе может быть не только количество продукции, произведенной в каком-то предыдущем периоде, но и плановое значение (

), нормативное (
) или эталонное значение, принятое за базу сравнения (
).

Индивидуальные индексы других показателей строятся аналогично. В частности, индивидуальный индекс цен рассчитывается по формуле.

где

и
- соответственно цена одного вида продукции в отчетном и базисном периодах. Этот индекс характеризует изменение цены одного определенного товара в текущем периоде по сравнению с базисным.

Индивидуальный индекс себестоимости (z) единицы продукции рассчитывается по формуле

Он также показывает изменение себестоимости единицы продукции в текущем периоде по сравнению с базисным.

Производительность труда может быть измерена количеством продукции, производимой в единицу времени (v) или затратами рабочего времени на производство единицы продукции (t). Поэтому можно построить:

· Индекс количества продукции, произведенной в единицу времени:

· Индекс затрат времени на производство единицы продукции:

Для характеристики производительности труда часто используется индивидуальный индекс выработки продукции в стоимостном выражении на одного рабочего:

где р - сопоставимые цены на продукцию (обычно цены базисного периода).

Индивидуальный индекс стоимости продукции отражает, во сколько раз изменилась стоимость какого-либо товара в текущем периоде по сравнению с базисным, или сколько процентов составляет рост (снижение) стоимости товара, и определяется по формуле:

Индивидуальный индекс численности рабочих можно рассчитать следующим образом:

Он показывает, во сколько раз изменилась численность рабочих в текущем периоде по сравнению с базисным или сколько процентов составляет рост (снижение) численности рабочих.

Общие индексы рассчитывают для количественных и качественных показателей. В зависимости от цели исследования и наличия исходных данных используют различные формы построения общих индексов: агрегатную и средневзвешенную.

2.1. Агрегатный индекс.

Основной формой общих индексов являются агрегатные индексы.

Достижение в сложных статистических совокупностях сопоставимости разнородных единиц осуществляется введением в индексные отношения специальных сомножителей индексируемых величин. Такие сомножители называются соизмерителями. Они необходимы для перехода от натуральных измерителей разнородных единиц статистической совокупности к однородным показателям. При этом в числителе и знаменателе общего индекса изменяется лишь значение индексируемой величины, а их соизмерители являются постоянными величинами.

В качестве соизмерителей индексируемых величин выступают тесно связанные с ними экономические показатели: цены, количество и др.

Произведение каждой индексируемой величины на соизмеритель образует в индексном отношении определённые экономические категории.

Пример. Таблица 1.

Товар

Ед.

базисный

отчетный

Индивидуальные

изм.

период

период

индексы

цена за единицу

кол-во

цена за единицу

кол-во,

цен

Физическ. объёма

товара, руб.

товара, руб.

А

т

20

7500

25

9500

1,25

1,27

Б

м

30

2000

30

2500

1,0

1,25

В

шт.

15

1 000

10

1500

0,67

1,5

При определении по данным таблицы статистических индексов первый период принимается за базисный, в котором цена единицы товара принимается за

, а количество -
.

Второй период принимается за текущий (или отчетный), в котором цена единицы товара обозначается

, а количество -
.

Индивидуальные индексы показывают, что в текущем периоде по сравнению с базисным цена на товар А повысилась на 25%, на товар Б осталась без изменения, а на товар В снизилась на 33%. Количество реализации товара А возросло на 27%, товара Б — на 25%, а товара В — на 50%.

При определении общего индекса цен в агрегатной форме

в качестве

соизмерителя индексируемых величин

и
, могут приниматься данные о количестве реализации товаров в текущем периоде
. При умножении
на индексируемые величины в числителе индексного отношения образуется значение
, т.е. сумма стоимости продажи товаров в текущем периоде по ценам того же текущего периода. В знаменателе индексного отношения образуется значение
, т.е. сумма стоимости продажи товаров в текущем периоде по ценам базисного периода.

Агрегатная формула такого общего индекса цен имеет следующий вид:

(1)

Расчёт агрегатного индекса цен по данной формуле предложил немецкий экономист Г. Пааше, поэтому он называется индексом Пааше.

Применяем формулу для расчёта агрегатного индекса цен по данным табл. 1

числитель индексного отношения

=25 * 9 500 + 30 * 2 500 + 10 * 1 500 = 327 500 руб.

знаменатель индексного отношения

= 20 * 9 500 + 30 * 2 500 + 15 * 1 500 = 287 500 руб.

Полученные значения подставляем в формулу I:

или 113,9%

Применение формулы (1) показывает, что по данному ассортименту товаров в целом цены повысились в среднем на 13,9%.

При другом способе определения агрегатного индекса цен в качестве соизмерителя индексируемых величин

и
могут применяться данные о количестве реализации товаров в базисном периоде
. При этом умножение
на индексируемые величины в числителе индексного отношения образует значение
, т.е. сумму стоимости продажи товаров в базисном периоде по ценам текущего периода. В знаменателе индексного отношения образуется значение
, т.е. сумма стоимости продажи товаров в базисном периоде по ценам того же базисного периода. Агрегатная формула такого общего индекса имеет вид: