Смекни!
smekni.com

Анализ временных рядов (стр. 3 из 5)

yt = a0 + a1 t + a2 t2,

то заменой вида:


х1 = t, x2 = t 2,

мы получим линейную функцию двух переменных:

yt = a0 + a1 х1 + a2 х2 .

Оценку параметров такой функции можно провести методами линейного регрессионного анализа для множественной регрессии. [5, c.29]

Далее приведём основные понятия регрессионного анализа, которые используются для оценки параметров.

1.6 Оценка параметров уравнения регрессии

Уравнение регрессии всегда дополняется показателем тесноты связи. При использовании линейной регрессии в качестве такого показателя выступает линейный коэффициент корреляции ryt. Существуют разные модификации формулы линейного коэффициента корреляции. Некоторые из них приведены ниже:

, (1.6.1)

или


. (1.6.2)

Как известно, линейный коэффициент корреляции находится в пределах:


-1 ≤ ryt ≤ 1.

Следует иметь в виду, что величина линейного коэффициента корреляции оценивает тесноту связи рассматриваемых признаков в её линейной форме. Поэтому близость абсолютной величины линейного коэффициента корреляции к нулю ещё не означает отсутствия связи между признаками.

Для оценки качества подбора линейной функции рассчитывается квадрат линейного коэффициента корреляции ryt2, называемый коэффициентом детерминации. Коэффициент детерминации характеризует долю дисперсии результативного признака уt, объясняемую регрессией, в общей дисперсии результативного признака:

(1.6.3)

где

общая дисперсия результативного признака у;

остаточная дисперсия, определяемая, исходя из уравнения регрессии

уt = f(t).

Соответственно величина 1 – r2 характеризует долю дисперсии у, вызванную влиянием остальных, не учтённых в модели факторов.

Уравнение нелинейной регрессии, так же как и в линейной зависимости, дополняется показателем корреляции, а именно индексом корреляции R:

(1.6.4)

Иначе, индекс корреляции можно выразить как

Величина данного показателя находится в границах:

0 ≤ R ≤ 1,

чем ближе к единице, тем теснее связь рассматриваемых признаков, тем более надёжно найденное уравнение регрессии.

Парабола второго порядка, как и полином более высокого порядка, при лианеризации принимает вид уравнения множественной регрессии. Если же нелинейное относительно объясняемой переменной уравнение регрессии при линеаризации принимает форму линейного уравнения парной регрессии, то для оценки тесноты связи может быть использован линейный коэффициент корреляции, величина которого в этом случае совпадёт с индексом корреляции.

Иначе обстоит дело, когда преобразования уравнения в линейную форму связаны с зависимой переменной. В этом случае линейный коэффициент корреляции по преобразованным значениям признаков даёт лишь приближённую оценку тесноты связи и численно не совпадает с индексом корреляции. Так, для степенной функции ух = ахb после перехода к логарифмически линейному уравнению lny = lna + blnxможет быть найден линейный коэффициент корреляции не для фактических значений переменных х и у, а для их логарифмов, то есть rlnylnx. Соответственно квадрат его значения будет характеризовать отношение факторной суммы квадратов отклонений к общей, но не для у, а для его логарифмов:

.

Между тем при расчёте индекса корреляции используются суммы квадратов отклонений признака у, а не их логарифмов. С этой целью определяются теоретические значения результативного признака, то есть

, как антилогарифм рассчитанной по уравнению величины
и остаточная сумма квадратов как
. Индекс корреляции определяется по формуле

В знаменателе расчёта R2yx участвует общая сумма квадратов отклонений фактических значений у от их средней величины, а в расчёте r2lnxlny участвует .

Соответственно различаются числители и знаменатели рассматриваемых показателей:

- в индексе корреляции и

- в коэффициенте корреляции.

Вследствие близости результатов и простоты расчётов с использованием компьютерных программ для характеристики тесноты связи по нелинейным функциям широко используется линейный коэффициент корреляции.

Несмотря на близость значений R

и r
или R
и r
в нелинейных функциях с преобразованием значения признака у, следует помнить, что если при линейной зависимости признаков один и тот же коэффициент корреляции характеризует регрессию, как следует помнить, что если при линейной зависимости признаков один и тот же коэффициент корреляции характеризует регрессию как
, так и
, так как
, то при криволинейной зависимости
для функции y=j(x) не равен
для регрессии x=f(y).

Поскольку в расчёте индекса корреляции используется соотношение факторной и общей суммы квадратов отклонений, то

имеет тот же смысл, что и коэффициент детерминации. В специальных исследованиях величину
для нелинейных связей называют индексом детерминации.

Оценка существенности индекса корреляции проводится, так же как и оценка надёжности коэффициента корреляции.

Индекс корреляции используется для проверки существенности в целом уравнения нелинейной регрессии по F-критерию Фишера:

где

- индекс детерминации;

n – число наблюдений;

m – число параметров при переменных х.

Величина m характеризует число степеней свободы для факторной суммы квадратов, а ( n – m - 1) – число степеней свободы для остаточной суммы квадратов.

Для степенной функции

m = 1 и формула F – критерия примет тот же вид, что и при линейной зависимости:

Для параболы второй степени y = a0 + a1x + a2x2 +εm = 2 и

(1.6.5)

Расчёт F-критерия можно вести и в таблице дисперсионного анализа результатов регрессии, как это было показано для линейной функции.

Индекс детерминации можно сравнивать с коэффициентом детерминации для обоснования возможности применения линейной функции. Чем больше кривизна линии регрессии, тем величина коэффициента детерминации меньше индекса детерминации. Близость этих показателей означает, что нет необходимости усложнять форму уравнения регрессии и можно использовать линейную функцию.

Практически, если величина разности между индексом детерминации и коэффициентом детерминации не превышает 0,1, то предположение о линейной форме связи считается оправданным. В противном случае проводится оценка существенности различия R2

, вычисленных по одним и тем же исходным данным, через t – критерий Стьюдента:

(1.6.6)

m|R- r| - ошибка разности между R2

и r2
, определяемая по формуле

Если t факт >t табл , то различия между рассматриваемыми показателями корреляции существенны и замена нелинейной регрессии уравнением линейной функции невозможна. Практически, если величина t < 2, то различия между Ryxи ryxнесущественны, и, следовательно, возможно применение линейной регрессии, даже если есть предположения о некоторой нелинейности рассматриваемых соотношений признаков фактора и результата.