Смекни!
smekni.com

Средний арифметический и средний гармонический индексы, область их применения/ Цепные и базисные индексы (стр. 2 из 3)

Рассмотрим применение среднего индекса цен на примере.

Пусть имеются данные о продаже товаром в магазине (табл.2.2.)

Таблица 2.2.

Данные о продаже товаров

Товар, ед.изм. Продано в отчетном периоде p1q1, тыс.руб.

Изменение цен на товары

в отчетном периоде

по сравнению с базисным, %

Туфли мужские, пары 186 +3
Костюмы, шт. 214 +6
ИТОГО 400 -

Определить общий кодекс цен.

Решение. Запишем, исходя из условия, индивидуальные индексы цен: iⁿp=1,06 и i′p=1,03 и подставим их значения в формулу среднего гармонического индекса цен (2.8):

Ip= ∑p1q1 = 186+214 = 400 = 1,046 или 104,60%
p1q1 186 + 214 382,47
ip 1,03 1,06

Следовательно, в отчетном периоде по сравнению с базисным цены на данную группу товаров повысился в среднем на 4,6% . [3 с.163]

2.4. Базисные и цепные индексы

В ходе экономического анализа изменение индексируемых величин часть изучают не за два, за ряд последовательных периодов. Возникает необходимость построения индексов за ряд этих последовательных периодов.

В зависимости от выбора базы сравнения индексы бывают цепными и базисными.

В системе базисных индексов сравнения уровней индексируемого показателя в каждом индексе производится с уровнем базисного периода, а системе цепных индексов уровни индексируемого показателя сопоставляются с уровнем предыдущего периода.

Цепные и базисные индексы могут быть как индивидуальные, так и общие.

Ряды индивидуальных индексов просты по построению:

· базисные индексы Ip= p1 ; Ip= p2 ; Ip= p3 ; Ip= pn .
р0 р0 р0 р0
· цепные индексы Ip= p1 ; Ip= p2 ; Ip= p3 ; Ip= pn .
р0 р1 р2 pn-1

Между цепными и базисными индивидуальными индексами существует взаимосвязь - произведение последовательных цепных индивидуальный индексов дает базисный индекс последнего периода:

Ip= p1 * p2 * p3 * pn = pn
р0 р1 р2 рn-1 р0

Отношение базисного индекса отчетного периода к базисному индексу предшествующего периода дает цепной индекс отчетного периода:

Ip= pn : рn-1 = pn
р0 р0 рn-1

Это правило позволяет применять так называемый цепной метод, т.е находить неизвестный ряд базисных индексов по известным цепным, и наоборот.

Рассмотрим построение базисных и цепных индексов на примере агрегатных индексов цен и физического объема продукции. Известно, что если строится ряд индексов, то веса в нем могут быть либо постоянными для всех индексов ряда, либо переменными.

Базисные индексы

Индексы цен Паше (с переменными весами):

IР1/0= ∑p1q1 ; IP2/0= ∑p2q2 ; …; IPn/0= ∑pnqn ;
∑p0q1 ∑p0q2 ∑p0qn

Индексы цен Ласпейреса (с постоянными весами)

IP1/0= ∑p1q0 ; IP2/0= ∑p2q0 ; …; IPn/0= ∑pnq0 ;
∑p0q0 ∑p0q0 ∑p0q0

Индексы физического объема продукции (с постоянными весами):

Iq1/0= ∑p1q0 ; Iq2/0= ∑p2q0 ; …; Iqn/0= ∑qnp0 ;
∑p0q0 ∑p0q0 ∑p0q0

Цепные индексы

Индексы цен Паше (с переменными весами):

IР1/0= ∑p1q1 ; IP2/1= ∑p2q2 ; …; IPn/n-1= ∑pnqn ;
∑p0q1 ∑p1q2 ∑pn-1qn

Индексы цен Ласпейреса (с постоянными весами)

IP1/0= ∑p1q0 ; IP2/1= ∑p2q0 ; …; IPn/n-1= ∑pnq0
∑p0q0 ∑p1q0 ∑pn-1q0

Индексы физического объема продукции (с постоянными весами):

Iq1/0= ∑p1q0 ; Iq2/1= ∑q2p0 ; …; Iqn/n-1= ∑qnp0 .
∑q0p0 ∑q1p0 ∑qn-1p0

Итак, в базисных агрегатных индексах все отчетные данные сопоставляются только с базисными (закрепленными) данными, а в цепных – с предыдущими (в данном случае – смежными) данными.

Ряды агрегатных индексов с постоянными весами имеют преимущество – сохраняется взаимосвязь между цепными и базисными индексами, например, в ряду агрегатных индексов физического объема:

∑q1p0 * ∑q2p0 * ∑q3p0 = ∑q3p0
∑p0q0 ∑q1p0 ∑q2p0 ∑p0q0

или в ряду агрегатных индексов цен Ласпейреса:

∑p1q0 * ∑p2q0 * ∑p3q0 = ∑p3q0
∑p0q0 ∑p1q0 ∑p2q0 ∑p0q0

Таким образом, использование постоянных весов в течение ряда лет позволяет переходить от цепных общих индексов к базисным, и наоборот.

В рядах агрегатных индексов качественных показателей, которые строятся с переменными весами (например, ряд цен Паше), перемножение цепных индексов не дает базисный:

∑p1q1 * ∑p2q2 * ∑p3q3 ∑p3q1
∑p0q1 ∑p1q2 ∑p2q3 ∑p0q1

Для таких индексов переход от цепных индексов к базисным, и наоборот невозможен. Но в статистической практике часто возникает необходимость определения динамики цен за длительный период времени на основе цепных индексов или с переменными веса. Тогда для получения приближенного итогового индекса цепные индексы цен перемножают, заведомо зная, что в таком расчете допускается ошибка. Отчетные индексы этого ряда используются для пересчета стоимостных показателей отчетного периода в ценах предыдущего года.

III. Практическая часть

Второй вариант.

ЗАДАЧА I.

Имеются следующие данные о стаже работы и проценты выполнения норм выработки рабочих-сдельщиков за отчетный месяц:

Рабочий,

№ п/п

Стаж,

число лет

Выполнение норм,

%

Рабочий,

№ п/п

Стаж,

число лет

Выполнение норм,

%

1 1,0 96 11 10,5 108
2 6,5 103 12 9,0 107
3 9,2 108 13 5,0 105
4 4,5 103 14 6,0 103
5 6,0 106 15 10,2 109
6 2,5 100 16 5,4 102
7 2,5 101 17 7,5 105
8 16,0 113 18 8,0 106
9 14,0 110 19 8,5 106
10 12,0 109 20 11,0 107

Для выявления зависимости между стажем работы и выполнением норм выработки произвести группировку рабочих по стажу, образовав пять групп с равными интервалами.

По каждой группе и совокупности рабочих подсчитайте: 1) число рабочих; 2) средний стаж работы; 3) средний процент выполнения норм выработки.

Результаты оформите в групповой таблице и сделайте выводы.

РЕШЕНИЕ:

В качестве группировочного признака возьмем стаж рабочих. Образуем пять групп рабочих с равными интервалами. Величину интервала определим по формуле:

хmax - xmin 16-1

h= _____________ = _________= 3 число лет

n 5

Обозначим границы групп:

1 – 4 – 1-я группа;

4 – 7 – 2-я группа;

7 – 10 – 3-я группа;

10 – 13 – 4-я группа;

13 – 16 – 5-я группа.

После того, как определен группировочный признак, задано число групп и образованы сами группы, необходимо отобрать показатели, которые характеризуют группы, и определить их величины по каждой группе. Результаты разносим в таблицу 3.1.

Таблица 3.1

№ группы Группы рабочих по стажу работы Число рабочих Средний стаж работы, число лет Средний процент выполнения норм выработки, %
1 1 – 4 3 2 99
2 4 – 7 6 5,6 103,7
3 7 – 10 5 8,4 106,4
4 10 – 13 4 10,9 108,3
5 13 – 16 2 15 111,5
ИТОГО 20

Вывод.

Таким образом, чем больше стаж работы, тем выше процент выполнения норм выработки.