Здесь величину W можно трактовать как максимальный дополнительный выигрыш, который достигается, если в состоянии Vj вместо варианта Ui выбрать другой, оптимальный для этого внешнего состояния, вариант.
Соответствующее критерию Сэвиджа правило выбора следующее: каждый элемент матрицы решений [Wij] вычитается из наибольшего результата max Wij соответствующего столбца. Разности образуют матрицу остатков. Эта матрица пополняется столбцом наибольших разностей Wir. Выбирается тот вариант, в строке которого стоит наименьшее значение.
Согласно критерию Гурвица выбирается такая стратегия, которая занимает некоторое промежуточное положение между крайним пессимизмом и оптимизмом:
(1.20)где
- коэффициент пессимизма, выбираемый в интервале [0,1].
Правило выбора согласно этому критерию следующее: матрица решений [Wij] дополняется столбцом, содержащим средние взвешенные наименьшего и наибольшего результатов для каждой строки (2.6). Выбирается тот вариант, в строках которого стоят наибольшие элементы Wir этого столбца.
При =1 критерий Гурвица превращается в критерий Вальда (пессимиста), а при =0 - в критерий азартного игрока. Отсюда ясно, какое значение имеет весовой множитель . В технических приложениях правильно выбрать этот множитель бывает так же трудно, как правильно выбрать критерий. Поэтому чаще всего весовой множитель =0.5 принимается в качестве средней точки зрения.
Критерий Гурвица предъявляет к ситуации, в которой принимается решение, следующие требования:
· о вероятности появления состояния Vj ничего не известно;
Критерий Ходжа-Лемана базируется одновременно на критериях Вальда и Байеса-Лапласа:
. (1.20)Правило выбора, соответствующее этому критерию, формулируется следующим образом: матрица решений [Wij] дополняется столбцом, составленным из средних взвешенных (с постоянными весами) математического ожидания и наименьшего результата каждой строки. Отбирается тот вариант решения, в строке которого стоит наибольшее значение этого столбца.
При z=1 критерий преобразуется в критерий Байеса-Лапласа, а при z=0 превращается в критерий Вальда. Таким образом, выбор параметра z подвержен влиянию субъективизма. Кроме того, без внимания остается и число реализаций. Поэтому этот критерий редко применяется при принятии технических решений.
Критерий Ходжа-Лемана предъявляет к ситуации, в которой принимается решение, следующие требования:
· о вероятности появления состояния Vj ничего не известно, но некоторые предположения о распределении вероятностей возможны;
Общие рекомендаций по выбору того или иного критерия дать затруднительно. Однако отметим следующее: если в отдельных ситуациях не допустим даже минимальный риск, то следует применять критерий Вальда; если определенный риск вполне приемлем, то можно воспользоваться критерием Сэвиджа. Можно рекомендовать одновременно применять поочередно различные критерии. После этого среди нескольких вариантов, отобранных таким образом в качестве оптимальных, приходится волевым решением выделять некоторое окончательное решение.
Такой подход позволяет, во-первых, лучше проникнуть во все внутренние связи проблемы принятия решений и, во-вторых, ослабляет влияние субъективного фактора. Кроме того, в области технических задач различные критерии часто приводят к одному результату.
Применение данных критериев с методической точки зрения удобно продемонстрировать на примере одной задачи.
Пример 1.3. Обоснование состава ремонтной бригады.
На предприятии решается вопрос о создании ремонтной бригады. Основываясь на применениии критериев Вальда, Лапласа, Сэвиджа и Гурвица, определить наиболее целесообразное число членов бригады. Исходные данные сведены в табл. 1.1, в ячейках которой занесены доходы при разных вариантах (стратегиях). Под стратегией понимается x -число членов бригады и R - количество станков, требующих ремонта.
Таблица 1.1
x\R | 40 | 30 | 20 | 10 |
5 | 50 | 100 | 180 | 250 |
4 | 80 | 70 | 80 | 230 |
3 | 210 | 180 | 120 | 210 |
2 | 300 | 220 | 190 | 150 |
1. Критерий Вальда. Как указывалось выше критерий Вальда выражается в двухь формах, зависящих от вида исходных данных.
· Если исходными данными являются потери при различных стратегиях, то критерий выбирается в форме минимакса (минимальные потери из минимально возможных), то есть критерий (2.6) имеет вид
.Таким образом, справа дописывается столбец максимумов по строкам.
Таблица 1.3
x\R | 40 | 30 | 20 | 10 | max |
5 | 50 | 100 | 180 | 250 | 250 |
4 | 80 | 70 | 80 | 230 | 230 |
3 | 210 | 180 | 120 | 210 | 210 |
2 | 300 | 220 | 190 | 150 | 300 |
Для удобства запишем его в виде транспонированного вектора max uxR = <250, 230, 210, 300>т и выбираем минимальное значение 210. Таким образом, при данных условиях рациональным решением будет x=3, R=10, min uxR = 210.
· Если в таблице фигурируют доходы при различных стратегиях, то критерий Вальда принимает форму максимина (максимум из минимумов), то есть критерий (2.6) имеет вид
.Таким образом, справа дописывается столбец минимумов по строкам.
Таблица 1.3
x\R | 40 | 30 | 20 | 10 | Min |
5 | 50 | 100 | 180 | 250 | 50 |
4 | 80 | 70 | 80 | 230 | 70 |
3 | 210 | 180 | 120 | 210 | 120 |
2 | 300 | 220 | 190 | 150 | 150 |
Тогда решающий столбец имеет вид max uxR = <50, 70, 120, 150>т. Максиминное значение равно 150. Таким образом, при данных условиях рациональным решением будет: x=2, R=10, max uxR = 150.
2. Критерий Лапласа. Как известно, критерий Лапласа предполагает, что все состояния системы равновероятны и рациональные решения выбираются по критерию:
.При данных предыдущего примера в случае, если в таблице записаны потери при том или ином варианте, значение критериев подсчитывается так:
W1 = 0.25 (50+100+180+250) = 145;
W2 = 0.25 (80+70+80+230) = 115;
W3 = 0.25 (210+180+120+210) = 180;
W4 = 0.25 (300+220+190+150) = 215.
Таким образом наилучшим решением будет x=4, минимум потерь (наибольший выигрыш) равен 115.
3. Критерий Сэвиджа. В этом случае составляется новая матрица, элементы которой составляются по правилу:
Составим матрицу W(xi, Rj) - матрицу сожалений для случая, когда uij - потери, используя предыдущие данные. Соответствующая матрица получается путем вычисления значений min(xi, Rj), равных 50, 70, 80 и 150 из столбцов 1, 2, 3, 4, соответственно
max W(xi, Rj) | |||||
0 | 30 | 100 | 100 | 100 | |
W(xi, Rj)= | 30 | 0 | 0 | 0 | 80 |
160 | 110 | 40 | 60 | 160 | |
250 | 150 | 110 | 0 | 250 |
Таким образом, минимальные потери будут при x=2, когда max W(xi, Rj)=80. Отметим, что независимо от того, является функцией сожаления, определяющая потери. Поэтому здесь можно применить только минимаксный критерий.
4. Критерий Гурвица. В отличие от примененных выше "жестких" критериев, критерий Гурвица является "гибким", так как позволяет варьировать "степень оптимизма-пессимизма". Таким образом, этот критерий устанавливает баланс между случаями крайнего оптимизма или пессимизма, путем введения коэффициента веса . Как указывалось выше, критерий записывается в виде:
Применим данный критерий к нашим исходным данным, полагая =0.5. Матрица значений W будет выглядеть следующим образом:
Таблица 1.4
min u(xi, Rj) | max u(xi, Rj) | min u(xi, Rj) + max u(xi, Rj) | |
5 | 50 | 250 | 15 |
4 | 70 | 230 | 15 |
3 | 120 | 210 | 165 |
2 | 150 | 300 | 225 |
Таким образом, в результате применения этого критерия получилось, что существуют два равнозначных варианта:
x1 = 5, x2 = 4 при одинаковых значениях W1 = W2 = 15.
1.4. Учет активных условий
Как правило, решение практических задач, связанных с оценкой качества и надежности изделий лесного машиностроения, зависит не только от оперирующей стороны (допустим, конструктора), но и от действий других субъектов системы (например, технолога-лесозаготовителя). Каждая из сторон преследует собственные цели, не всегда совпадающие друг с другом. Неопределенность такого рода при принятии решений относят к классу поведенческих неопределенностей. Теоретической основой нахождения оптимального решения в условиях неопределенности и конфликтных ситуаций является теория игр. Игра - это математическая модель процесса функционирования конфликтующих элементов систем, в котором действия игроков происходят по определенным правилам, называемых стратегиями. Ее широкому распространению в последнее время способствовало как развитие ЭВМ, так и создание аналитического аппарата, позволяющего находить аналитические решения для широкого класса задач. Основной постулат теории игр - любой субъект системы по меньшей мере так же разумен, как и оперирующая сторона и делает все возможное, чтобы достигнуть своих целей. От реального конфликта игра (математическая модель конфликта) отличается тем, что она ведется по определенным правилам, которые устанавливают порядок и очередность действий субъектов системы, их информированность, порядок обмена информацией, формирование результата игры.