В указанном случае кредитор может принять одно из пяти решений:
l1=1, l2=0, l3=0; l1=0, l2=1, l3=1; l1=0, l2=1, l3=0; l1=0, l2=0, l3=1; l1=0, l2=0, l3=0; (решения l1=1, l2=1, l3=0; l1=1, l2=0, l3=1; l1=1, l2=1, l3=1 исключаются, так как кредитор располагает суммой средств меньшей, чем s1+s2, s1+s3 и s1+s2+s3).
В рассматриваемой ситуации преимущества того или иного решения не являются очевидными. Так, первый заемщик предлагает заключение кредитной сделки на наибольшую сумму средств, следовательно, при заключении кредитной сделки с этим заемщиком (это соответствует отказу двум другим заемщикам) кредитор может получить наибольшую прибыль, но вместе с этим первый заемщик имеет несколько меньшую кредитоспособность, чем два других, поэтому заключение кредитной сделки с заемщиками n2 и n3 сопровождается меньшим риском. Однако, с другой стороны, заключение кредитной сделки с этими заемщиками (т.е. отказ первому заемщику) сулит прибыль в два раза меньшую, чем решение, отдающее предпочтение первому заемщику (см. значения s1, s2 и s3 ).
В эти противоречивые рассуждения вносят ясность значения средней прибыли, вычисленные по изложенной выше методике для каждого из пяти возможных решений. Эти значения, рассчитанные для нашего примера, представлены на рис. 3, из которого следует, что максимальное значение средней прибыли обеспечивается при выборе решения l1=0, l2=1, l3=1 (при выдаче кредита второму и третьему заемщикам).
е(l1, l2, l3), Оптимальное у.д.е. решение
l1=1, l1=0, l1=0, l1=0, l1=0, Решения
l2=0 , l2=1, l2=1, l2=0, l2=0, кредитора
l3=0 l3=1 l3=0 l3=1 l3=0
Справедливость этого выбора подтверждают изображенные на рис. 4 эволюции суммарной прибыли кредитора S в M подобных случаях, которые были получены в результате статистического моделирования действий заемщиков по выполнению условий кредитных сделок.
Кривая, нанесенная сплошной линией, показывает, как при увеличении числа М рассмотренных случаев изменялась итоговая прибыль кредитора S (l1=0, l2=1, l3=1), имеющая место при принятии оптимального решения l1=0, l2=1, l3=1, а кривые, нанесенные пунктирной линией, отражают изменение итоговой прибыли кредитора при выборе трех других неоптимальных решений. На основании сравнительного анализа указанных реализаций можно заключить, что выбор решений, отличных от оптимального, принес бы кредитору существенно меньшую прибыль.
Таким образом, предложенная методика выбора оптимальной стратегии распределения свободных банковских средств позволяет банку накапливать опыт заключения сделок различных видов. Этот опыт формализуется в специальной базе данных в виде количественных оценок надежности клиентов и сделок различных классов. Указанные оценки представляют собой значения вероятностей соблюдения клиентами условий сделок.
Эти вероятности в соответствии с рассмотренной методикой используются для оценивания (прогнозирования) значений банковского риска (среднего убытка) и средней прибыли для каждой возможной группы предлагаемых сделок. Рекомендуемое правило использования этих величин (правило выбора оптимальной стратегии распределения банковских средств) учитывает, прежде всего, последствия возможных решений банка и обеспечивает получение им максимальной средней прибыли от предлагаемых сделок, что также соответствует минимуму банковского риска. Очевидно, что приведенные в этой статье рассуждения не позволяют в полной мере учесть все возможности повышения прибыли банка от заключения различных сделок, поскольку не принималась во внимание зависимость прибыли от сроков возврата ссуды заемщиками, инфляции, перспектив заключения новых сделок и т. д.
Кроме того, эти рассуждения определяют правило принятия только положительных или отрицательных решений относительно каждой сделки. Однако на практике банку предоставляется и возможность различных изменений условий сделок. Указанные обстоятельства не рассматривались, чтобы не затруднять изложение сути методики оценки банковского риска и выбора оптимальной стратегии заключения сделок, базирующейся на основных положениях теории статистических решений.
Примечания.
1. Вальд А. Последовательный анализ: Пер. с англ. / Под ред. Б. А. Севостьянова. М.: Физматгиз, 1960; Вальд А. Статистические решающие функции. Позиционные игры: Пер. с англ./ Под ред. Н.И. Воробьева, И. Н. Врублевской.- М.: Наука, 1967.
2. Кабышев О. Правомерность предпринимательского риска // Хозяйство и право, 1994, № 3.
3. См.,напр.: Янишевская В.М., Севрук В.Т., Лукачер Т.Г. Анализ платежеспособности предприятий: Практическое руководство для государственных и иных предприятий. - М., 1991; Банковское дело / Под ред. Лаврушина О.И. - Банковский и биржевой научно-консультационный центр, 1992; Кирисюк Г.М., Ляховский В.С. Оценка банком кредитоспособности заемщика // Деньги и кредит, 1993, № 4.
4. Корн Р., Корн Т. Справочник по математике для научных работников и инженеров: Пер. с англ. / Под ред. И.Г. Арамановича. 5-е изд. М.: Наука, 1984.