Смекни!
smekni.com

Состав нефти и газа (стр. 5 из 7)

Основными структурными элементами молекулы нефтяных смол являются конденсированные циклические системы, в состав которых входят ароматические, циклоалкановые и гетероциклические кольца, соединённые между собой короткими алифатическими мостиками и имеющие по несколько алифатических, реже циклических заместителей в цикле. По Сергиенко С.Р., строение молекул смол можно представить одной из следующих формул:

Смолы представляют собой очень вязкие малоподвижные жидкости, а иногда и твёрдые аморфные вещества от тёмно-коричневого до бурого цвета. Плотность их близка к 1,1 г/мл, молекулярная масса от 600 до 1000.

Смолистые вещества термически и химически нестабильны, легко окисляются и конденсируются, превращаясь при этом в асфальтены.

Смолы легко сульфируются, переходя в раствор серной кислоты. На этом основан сернокислотный способ очистки топлив и масел. Смолистые вещества образуют комплексы с хлоридами металлов, фосфорной кислотой.

Асфальтены являются более высокомолекулярными соединениями, чем смолы. Они отличаются от смол не только несколько меньшим содержанием водорода, но и более высоким содержанием гетероатомов. Предполагают, что асфальтены являются продуктами конденсации смол.

На основании многочисленных исследований химического строения молекул асфальтенов считают, что последние представляют собой полициклическую, ароматическую, сильно конденсированную систему с короткими алифатическими заместителями у ароматических ядер. В молекулах асфальтенов присутствуют также пяти- и шестичленные гетероциклы. В зависимости от природы нефти количественное соотношение ароматических, нафтеновых и гетероциклических структурных элементов может меняться в широких пределах.

Предложены следующие типы полициклических структур - звенья молекул смол и асфальтенов:

Кислород в асфальтенах входит не только в состав гетероциклов, но и в различные функциональные группы: гидроксильные, карбонильные, карбоксильные и сложноэфирные.

Сера входит также в состав сульфидных мостиков между фрагментами молекул асфальтена. Обнаружены циклические соединения, содержащие сульфоксидную группу.

Атомы азота находятся в составе пиридиновых и пиррольных колец, причём последние чаще всего встречаются в виде порфириновых комплексов ванадия и никеля.

Асфальтены представляют собой твёрдые аморфные вещества, плотность их выше 1,14, молекулярная масса от 2000 до 4000.

Асфальтены, выделенные из сырых нефтей, хорошо растворяются в сероуглероде, хлороформе, бензоле, циклогексане и других органических растворителях, но не растворяются в низших алкановых углеводородах. На этом свойстве основано выделение асфальтенов из нефти и нефтепродуктов.

При нагревании асфальтены размягчаются, но не плавятся; при температуре выше 300 0С они переходят в кокс и газ.

Полярные центры, возникающие в молекуле за счёт гетероатомов и сопряжённых систем-электронов ароматических фрагментов обуславливают склонность асфальтенов к ассоциации даже в разбавленных растворах. Эту способность асфальтены сохраняют и в нефтях. При достаточно большой концентрации асфальтенов они образуют коллоидную систему, которая определяет вязкость нефти.

Асфальтены химически активны. Они легко вступают в реакции окисления, сульфирования, галогенирования, нитрования, несколько труднее гидрируются. Асфальтены склонны к комплексообразованию с хлоридами металлов и ортофосфорной кислотой.

Из асфальтенов нефтяных остатков (продуктов термической переработки нефти) выделяют две подгруппы соединений в зависимости от растворимости -карбены и карбоиды. Карбены нерастворимы ни в каких углеводородах и частично растворимы только в пиридине и сероуглероде; карбоиды не растворяются практически ни в чём.

Эти вещества отсутствуют в сырой нефти, они образуются в качестве вторичных продуктов высокотемпературной переработки нефти в присутствии кислорода или воздуха.

Следует сказать, что в природе самостоятельно существуют твёрдые смолообразные чёрные вещества - асфальты. Их залегание обычно связано с нефтяными залежами. Предполагают, что они образованы при испарении и одновременном окислении нефти в местах её выхода на земную поверхность. В своём составе они содержат высокомолекулярные углеводороды, смолы и асфальтены.

Смолисто-асфальтовые вещества, найденные в нефти, имеют разное происхождение. Часть их составляют вещества, имеющие, по всей вероятности, реликтовый характер. Другая часть - продукты окисления и осернения высокомолекулярных углеводородов или абиогенного преобразования некоторых малоустойчивых гетероатомных соединений и углеводородов, преимущественно высокоциклической природы.

Присутствие смолисто-асфальтовых веществ в топливах и смазочных маслах нежелательно. Они ухудшают цвет, увеличивают нагарообразование, понижают смазочную способность масел. Смолисто-асфальтовые вещества отравляют катализаторы, вызывают закоксовывание аппаратуры при переработке нефти. В то же время смолисто–асфальтовые вещества входят в состав природных асфальтов и остатков вакуумной перегонки нефти и битумов, придают им ряд ценных технических свойств, позволяющих широко использовать их в народном хозяйстве.

В настоящее время битумы расходуются ежегодно десятками миллионов тонн. Большей частью они используются в составе дорожных покрытий как связующий, герметизирующий и гидроизоляционный материал для создания кровли, гидроизоляции фундаментов зданий и гидротехнических сооружений. Они служат для электроизоляции кабелей, аккумуляторов, входят в состав некоторых резин, лаков.

Очень важной областью их применения являются поверхностные покрытия подземных трубопроводов для защиты их от коррозии. Эффективность этого метода защиты определяется не только высокими гидроизоляционными свойствами битумных покрытий, но также и их хорошим электроизолирующим действием, сильно уменьшающим вредное воздействие блуждающих токов. В особенности ответственной является защита от коррозии магистральных нефтепроводов и газопроводов.

Битум может входить в состав промывочной жидкости, используемой при бурении. Качество битумов зависит от содержания в них различных смолисто-асфальтовых веществ. Так, асфальтены придают битумам твёрдость, повышают их температуру размягчения, а нейтральные смолы обеспечивают эластичность и повышают прочность.

1.1.7. Минеральные компоненты

К минеральным компонентам нефти относят содержащиеся в нефти соли и комплексные органические соединения металлов. Общее содержание их в нефти не превышает 0,03% масс. Часть металлов попадает в нефть при её добыче и транспортировке. В нефтях обнаружены щелочные и щелочно-земельные металлы (Na, K, Ba, Sr, Mg), металлы переменной валентности (d-элементы:V, Zn, Ni, Fe, Mo, Co, W, Cr, Cu, Mn, Pb, Ga, Ag, Ti; p-элементы: Cl, Br, I, Si, Al, B, P ) и др.

Определение состава и концентрации этих элементов проводят главным образом спектральным анализом золы, полученной при сжигании нефти.

В заметно больших количествах по сравнению с другими элементами в нефти содержится ванадий и никель, которые связаны в металлопорфириновые комплексы.

В высокосернистых нефтях содержание ванадия достигает 2·10-2%, никеля 1·10-2%, содержание других металлов значительно меньше.

Изучение микроэлементов нефти представляет большой интерес в связи с проблемой происхождения нефти. Наличие в нефти многих элементов, характерных для растений и животных, является доказательством их родства.

Присутствующие в нефтях металлы затрудняют её переработку. Многие металлы и, в первую очередь, ванадий и никель снижают активность катализаторов, ускоряют процесс отложения кокса в печах. При сгорании котельных топлив образуется оксид ванадия (V), который способствует коррозии.

Присутствующие в нефтяных коксах микроэлементы нефти загрязняют продукцию электротермических производств (алюминий, железо и др.). Металлоорганические комплексы зачастую обладают поверхностно-активными свойствами и адсорбируются на границе раздела нефти и воды, способствуя образованию эмульсий.

Металлоорганические соединения. Металлоорганические соединения V, Ni, Cu, Zn и других металлов, содержащихся в нефтях, в основном, сосредоточены в гудроне, хотя некоторая часть (до 0,01%) их летуча и при перегонке переходит в масляные дистилляты.

Основная часть металлов связана со смолами и асфальтенами. Значительная часть металлов находится в нефтях в виде металлопорфириновых комплексов. Содержание металлорганических соединений в нефтях с высоким содержанием гетероорганических соединений, смол и асфальтенов значительно - на 2-3 порядка – выше, чем в малосернистых нефтях с низким содержанием асфальто-смолистых веществ.

1.2. Групповой химический состав нефтей.

Из элементного состава следует, что нефть в основном состоит из углеводородов. Наиболее широко в нефти представлены углеводороды трёх классов: алканы, циклоалканы и арены.

Присутствуют также углеводороды смешанного строения. Сравнительно жёсткие условия, в которых в природе находится нефть (температура до 200 0С и более), обусловливает незначительное содержание лишь в некоторых нефтях таких химически активных углеводородов, как алкены и алкины.

Соединения с циклическими и полициклическими структурами преобладают в нефтях, приуроченным к относительно молодым отложениям (третичным), а алифатические структуры более характерны для нефтей из палеозойских отложений.

Из неуглеводородных компонентов нефтей известны кислородные, сернистые, азотистые соединения, также смолы и асфальтены, содерджащие и кислород, и серу, и азот, но с не вполне ясной химической природой. Имеются и некотрые другие элементно – органические соединения, но характер их тоже пока не совсем ясен.

Нефть содержит также и минеральные вещества.

1.3.Фракционный состав нефти.

Для оценки качества добываемой нефти и выбора методов её дальнейшей переработки большое значение имеет распределение содержащихся в ней углеводородов по температурам кипения. Лабораторные исследования химического состава нефтей начинают с фракционной перегонки: отбирают узкие фракции, выкипающие в пределах двух-трёх, а иногда и одного градуса. В этих фракциях определяют содержание отдельных групп или индивидуальных углеводородов.

При лабораторном техническом контроле от начала кипения до 300 0С отбирают 10-градусные, а затем 50-градусные фракции.

На промышленных перегонных установках выделяют фракции, выкипающие в более широких температурных интервалах. Такие фракции обычно называют дистиллятами. Перегонку на таких установках вначале проводят при атмосферном давлении, отбирая следующие дистилляты:

- бензиновый (н.к. ÷ 170-200 0С);

- лигроиновый (160 ÷ 200 0С);

- керосиновый (180 ÷ 270-300 0С);

- газойлевый (270 ÷ 350 0С).

Промежуточные:

- керосино - газойлевый (270 ÷ 300 0С);

- газойле - соляровый (300 ÷ 350 0С);

- кубовый остаток - мазут.

Из фракций, выкипающих до 350 0С, смешением (компаундированием) составляют так называемые светлые нефтепродукты:

бензины авиационные и автомобильные; бензины и лигроины - растворители; керосины - реактивное и тракторное топливо; осветительный керосин; газойли - дизельное топливо.

Кубовый остаток (более 350 0С) - мазут, перегоняют в вакууме для предотвращения разложения компонентов, входящих в его состав, получая масляные дистилляты: соляровый, трансформаторный, веретённый, автоловый, цилиндровый и кубовый остаток - гудрон (или полугудрон). Масляные дистилляты идут на приготовление смазочных масел и пластичных смазок.

Из гудрона (полугудрона) получают наиболее вязкие смазочные масла и битум.

В зависимости от месторождения нефти имеют отличие по фракционному составу, выражающееся в различном выходе бензиновых, керосиновых и других фракций.

1.4. Элементный и изотопный состав нефтей.

Несмотря на то, что нефть залегает в различных геологических условиях, элементный состав её колеблется в узких пределах. Он характеризуется обязательным наличием пяти химических элементов - углерода, водорода, серы, кислорода и азота при резком количественном преобладании первых двух. Содержание углерода в нефтях колеблется в пределах 83-87%, в природных газах 42-78%. Водорода в нефтях 11-14%, в газах 14-24%. Из других элементов в нефтях чаще всего встречается сера. Её содержание в отдельных нефтях достигает 6-8%. В природных газах сера обычно содержится в виде сероводорода, количество которого иногда достигает 23% (Астраханское месторождение) и даже более 40% (Техас).