Смекни!
smekni.com

Подбор оптимального режима скважин эксплуатируемых установками электроцентробежных насосов (стр. 9 из 17)

Таблица 4.6.

Двигатель Номинальная мощность, кВт Номинальное напряжение, В Номинальный ток, A
ПЭДУ16–103В5, ПЭДУ16–103ДВ5ПЭДУК16–103В5, ПЭДУК16–103ДВ5 16 530 26
ПЭДУ22–103В5, ПЭДУ22–103ДВ5ПЭДУК22–103В5, ПЭДУК22–103ДВ5 22 700 27
ПЭДУ32–103В5, ПЭДУ32–103ДВ5ПЭДУК32–103В5, ПЭДУК32- 32 1000 27,5
ПЭДУ45–103В5, ПЭДУ45–103ДВ5ПЭДУК45–103В5, ПЭДУК45–103ДВ5 45 1050 37
ПЭДУС63–103В5, ПЭДУС63–103ДВ5ПЭДУСК63–103В5, ПЭДУСК63–103ДВ5 63 1500 36,5
ПЭДУС90–103В5, ПЭДУС90–103ДВ5ПЭДУСК90–103В5, ПЭДУСК90–103ДВ5 90 2100 37
ПЭДУ45–117В5, ПЭДУ45–117ДВ5ПЭДУК45–117В5, ПЭДУК45–117ДВ5 45 1.000 36
ПЭДУ63–117В5, ПЭДУ63–117ДВ5ПЭДУК63 – 117В5, ПЭДУК63–117ДВ5 63 1400 36
ПЭДУС90–117В5, ПЭДУС90–117ДВ5ПЭДУСК90–117B5, ПЭДУСК90–117ДВ5 90 1950 37
ПЭДУС 125–117В5, ПЭДУС125–117ДВ5ПЭДУСК125–117В5, ПЭДУСК 125–1 125 1950 51

Предельная длительно допускаемая температура обмотки статора электродвигателей (по сопротивлению для электродвигателей диаметром корпуса 103 мм) равна 170 °С, а остальных электродвигателей – 160 °С.

Двигатель состоит из одного или нескольких электродвигателей (верхнего, среднего и нижнего мощностью от 63 до 360 кВт) и протектора.

Электродвигатель (см. рис. 4. 4) состоит из статора, ротора, головки с токовводом, корпуса.

Статор выполнен из трубы, в которую запрессован магнитопровод, изготовленный из листовой электротехнической стали.

Обмотка статора – однослойная протяжная катушечная. Фазы обмотки соединены в звезду.

Расточка статора в зависимости от диаметра корпуса двигателя имеет следующие размеры.

Диаметр корпуса двигателя, мм. 103 117 123 130
Диаметр расточки статора, мм 50 60 64 68

Ротор короткозамкнутый, многосекцпонный. В состав ротора входят вал, сердечники, радиальные опоры (подшипники скольжения), втулка. Вал пустотелый, изготовлен из высокопрочной стали со специальной отделкой поверхности. В центральное отверстие вала ротора верхнего и среднего электродвигателей ввинчены две специальные гайки, между которыми помещен шарик, перекрывающий слив масла из электродвигателя при монтаже.

Сердечники выполнены из листовой электротехнической стали. В пазы сердечников уложены медные стержни, сваренные по торцам с короткозамыкающими кольцами. Сердечники набираются на вал, чередуясь с радиальными подшипниками. Набор сердечников на валу зафиксирован с одной стороны разрезным вкладышем, а с другой – пружинным кольцом.

Втулка служит для смещения радиальных подшипников ротора при ремонте электродвигателя.

Головка представляет собой сборочную единицу, монтируемую в верхней части электродвигателя (над статором). В головке расположен узел упорного подшипника, состоящий из пяты и подпятника, крайние радиальные подшипники ротора, узел токоввода (для несекционных электродвигателей) или узел электрического соединения электродвигателей (для секционных электродвигателей). Токоввод – изоляционная колодка, в пазы которой вставлены кабели с наконечниками.

Узел электрического соединения обмоток верхнего, среднего и нижнего электродвигателей состоит из выводных кабелей с наконечниками и изоляторов, закрепленных в головках и корпусах торцов секционирования.

Отверстие под пробкой служит для закачки масла в протектор при монтаже двигателя.

В корпусе, находящемся в нижней части электродвигателя (под статором), расположены радиальный подшипник ротора и пробки. Через отверстия под пробку проводят закачку и слив масла в электродвигатель.

В этом корпусе электродвигателей имеется фильтр для очистки масла.

Термоманометрическая система ТМС-Электон предназначена для контроля некоторых технологических параметров скважин, оборудованных УЭЦН, и защиты погружных агрегатов от аномальных режимов работы (перегрев электродвигателя или снижение давления жидкости на приеме насоса ниже допустимого).

Система ТМС-Электон состоит из погружного бдока, трансформирующего давление и температуру в частотно-манипулированный электрический сигнал, и наземного прибора, осуществляющего функции блока питания, усилителя-формирователя сигналов и устройства управления режимом работы погружным электронасосом по давлению и температуре.

Скважинный блок давления и температуры (ТМСП) выполнен в виде цилиндрического герметичного контейнера, размещаемого в нижней части электродвигателя и подключенного к нулевой точке его статорной обмотки. Наземный блок, устанавливаемый в комплектное устройство Электон, обеспечивает формирование сигналов на ее отключение и выключение насоса по давлению и температуре, а также измерение сопротивление изоляции. В качестве линии связи и энергопитания ТМСП используется силовая сеть питания погружного электродвигателя. Система имеет интерфейсы – RS 232 RS 485 для подключения компьюторов и может использоваться для передачи данных на другие устройства.

Техническая характеристика термоманометрической системы приведена ниже.

Диапазон контролируемого давления, МПа 0 – 25
Диапазон рабочих температур ТМСП, «С -60 – +150
Предельная температура погружного электродвигателя, °С 100
Диапазон рабочих температур наземного блока, °С – 60 – +40
Отклонение значения давления, формирующего сигнал управления на отключение или запуск УЭЦН, от заданной уставки, МПа, не более ±1
Средняя наработка на отказ, ч 12 000
Установленный срок службы, лет, 5
Диаметр скважинного преобразователя, мм 88
Длина скважинного преобразователя, мм 305
Габаритные размеры, мм:
Наземный блок 245 х 200 х 160
Погружной блок 100х630
Масса, кг:
Погружной блок 15
Наземный блок 8
устройства питания 4,2

1 Погружной блок

2 Соединительный узел, состоящий из корпуса подшипника и проставка

3 Основание

Наземный блок

Гидрозащита предназначена для предотвращения проникновения пластовой жидкости во внутреннюю полость электродвигателя, компенсации изменения объема масла во внутренней полости от температуры электродвигателя и передачи крутящего момента от вала электродвигателя к валу насоса.

Разработано два варианта конструкций гидрозащит для двигателей унифицированной серии: открытого типа – П92; ПК92; П114; ПК114 и закрытого типа – П92Д; ПК92Д; (с диафрагмой) П114Д; ПК114Д

Гидрозащиту выпускают обычного и коррозионностойкого (буква К – в обозначении) исполнений.

В обычном исполнении гидрозащита покрыта грунтовкой ФЛ-ОЗ-К ГОСТ 9109 – 81. В коррозионностойком исполнении гидрозащита имеет вал из К-монеля и покрыта эмалью ЭП-525, IV, 7/2 110 °С.

Основным типом гидрозащиты для комплектации ПЭД принята гидрозащита открытого типа. Гидрозащита открытого типа требует применения специальной барьерной жидкости плотностью до 2 г/см3, обладающей физико-химическими свойствами, которые исключают ее перемешивание с пластовой жидкостью скважины и маслом в полости электродвигателя.

Таблица 4.8

Гидрозащита Вместимость камер, л Передаваемаямощность,кВт Монтажнаядлина, мм Масса,кг
МаслоМА-ПЭД Барьернаяжидкость
П92, ПК92 5 2 125 2200 ± 5 53
П92Д, ПК92Д 6,5 0,15 125 2200 ± 5 59
П114, ПК114 5 4 250 2300 ± 5 53
П114Д, ПК114Д 8 0,25 250 2300 ±5 59

Конструкция гидрозащиты открытого типа представлена на рис. 4.5, а, закрытого типа – на рис. 4.5, б.

Верхняя камера заполнена барьерной жидкостью, нижняя – диэлектрическим маслом. Камеры сообщены трубкой. Изменения объемов жидкого диэлектрика в двигателе компенсируются за счет перетока барьерной жидкости в гидрозащите из одной камеры в другую.

В гидрозащитах закрытого типа применяются резиновые диафрагмы, их эластичность компенсирует изменение объема жидкого диэлектрика в двигателе.

Основные характеристики гидрозащит представлены в табл. 4.8.

4.4 Устройства и назначение Электон -04

4.1 Станция предназначена для управления и защиты электронасосов добычи нефти с двигателями типа ПЭД.

4.2 Станция предназначена для работы на открытом воздухе в условиях, регламентированных для климатического исполнения УХЛ1, согласно требованиям п. 2.1, 2.7 ГОСТ 15150, при следующих климатических факторах:

1) температура окружающей среды от минус 600С до +400С;

2) относительная влажность воздуха 75% при температуре + 150С, максимальная – 100% при температуре + 250С;

3) окружающая среда должна быть не взрывоопасной, не содержащей агрессивных газов и паров в концентрациях, разрушающих металлы и изоляцию, не насыщенной токопроводящей пылью;

4) высота над уровнем моря не более 1000 м.

4.3 Степень защиты станции от воздействия окружающей среды – IP43 по п. 4.2 ГОСТ 14254, вентиляционных отверстий – IP23 по п. 4.2 ГОСТ 14254

4.8 Питание станции осуществляется от трехфазной сети переменного тока напряжением 380 В частоты 50 Гц. Отклонение напряжения сети от номинального значения должно находиться в пределах от -25% до + 20%.

Контроллер станции сохраняет свою работоспособность при снижении линейного напряжения трехфазной сети до 230 В.