1. Гипотеза А.Е.Ферсмана, развитая затем К.А.Власовым, А.И.Гинзбургом. Пегматиты являются продуктами затвердевания специфического остаточного расплава, обособленного от магматического очага, высокоминерализованного летучими соединениями – H2O, F, Cl, B,CO2 и др. Полная эволюция этого расплава происходит в замкнутой системе. Вначале кристаллизуются типичные магматические минералы, которые затем подвергаются воздействию летучих минерализаторов, создающих пневматолито-
гидротермальные растворы. Первичные минералы частично замещаются, возникают новые. А.Е.Фесман выделял 5 этапов образования пегматитов:
• магматический (900-800С);
• эпимагматический (800-700С)
• пневматолитовый (700-400С)
• гидротермальный (400-50С)
• гипергенный (менее 50С).
2. Гипотеза А.Н.Заварицкого, В.Д.Никитина и др. отрицает значение остаточного магматического расплава и ведущую роль в становлении пегматитов отдает процессам собирательной перекристаллизации близких к гранитным пегматитам пород (гранитов, аплитов). Перекристаллизация осуществляется под воздействием горячих газово-водных растворов и приводит к формированию крупно- и гигантозернистых минеральных агрегатов. 1 этап – система закрытая. Горячие газово-водные растворы находятся в химическом равновесии с вмещающими гранитными породами, перекристаллизация происходит без изменений состава этих пород. На втором этапе растворы просачиваются через боковые породы, перестают быть химически равновесными, начинаются процессы растворения, замещения, образуются сложные метасоматические пегматиты.
3. Гипотеза Р.Джонса, Е.Камерона, Ф.Хесс и др., имеющая компромиссный характер. Пегматиты образуются комбинированным путем в два этапа. На первом магматическом этапе – закрытая система, из остаточного расплава кристаллизуются простые зональные пегматиты (фракционная кристаллизация). Затем система открытая, под воздействием газово-водных минерализованных глубинных растворов осуществляется метасоматическая переработка ранее отложенных минералов с выносом отдельных компонентов. Так возникают метасоматические части пегматитов, содержащие кварц, альбит, мусковит, минералы редких металлов.
4. Метаморфогенная гипотеза (Г.Рамберг, Ю.М.Соколов) и др.) объясняет условия формирования пегматитов в древних метаморфических комплексах. Пегматиты формируются на разных стадиях метаморфогенного преобразования преимущественно докембрийских пород и по особенностям состава соответствуют фации метаморфизма вмещающих пород. Согласно данной гипотезе пегматиты – продукты регрессивного метаморфизма.
Вопрос 4. Полезные ископаемые пегматитовых месторождений. Среди пегматитовых месторождений выделяется три генетических класса: простые, перекристаллизованные, метасоматически замещенные.
Простые пегматиты по минеральному и химическому составу соответствую исходным породам. Так, простые гранитные пегматиты содержат кварц, калиевый полевой шпат, кислые плагиоклазы, бесцветную слюду, турмалин, гранат. Они характеризуются письменной (графической) структурой, не обнаруживают признаков перекристаллизации и метасоматоза. К ним приурочены месторождения керамического сырья, используемого в фарфоровой, фаянсовой промышленности – в Карелии (Хетоламбино, Чкаловское), на Кольском полуострове, Украине (Бельчаковское, Глубочанское), в Восточной Сибири (Мамско-Чуйские).
Перекристаллизованные пегматиты – имеют крупнозернистые, гигантозернистые структуры (по А.Н.Заварицкому 1 этап). Раствор находится в равновесии с составом ранних пегматитообразующих соединений. Наиболее ценный минерал этих пегматитов – мусковит. Пример месторождений – Мамский район в Сибири, Карелия, Кольский полуостров. Площадь кристаллов мусковита иногда достигает нескольких квадратных метров.
Метасоматически замещенные – с полной зональностью и наличием крупных (до 200 м3) открытых полостей с друзами ценных минералов. Пегматиты этого типа не только перекристаллизованы, но и метасоматически преобразованы под воздействием горячих газово-водных растворов. Характерны месторождения, имеющие важное промышленное значение: лития, бериллия, цезия, рубидия (их называют редкометальными пегматитами). Кроме того их разрабатывают на руды олова, ниобия и тантала, вольфрама, урана, редких земель. Из нерудных полезных ископаемым к ним приурочены оптическое сырье, драгоценные камни. Пример – месторождение Кайстон (США), на котором встречен сподумен (LiAlSi2O6) длиной 16 м, в диаметре 1 м, массой 90 т. В Южной Африке на пегматитовом месторождении встречались кристаллы берилла (Be3 Al2Si6O18) массой 30 т. Месторождения корунда с его драгоценными разновидностями- сапфиром и рубином – Урал (Карабашское, Борзовское).
Литература:[1], с. 77-92; [2], с. 96-102
Проектные задания студентам по самостоятельной работе Изучить генезис пегматитовых месторождений. Вопросы для самоконтроля знаний:
1. Какие образования относят к пегматитам?
2. Как различаются пегматиты по составу?
3. С какими пегматитами связаны промышленные месторождения?
4. Гипотеза А.Ферсмана и еѐ недостатки
5. Гипотеза Р.Джонса, Е.Камерона и еѐ недостатки;
6. Гипотеза А. Заварицкого и критические замечания к ней;
7. Метаморфогенная гипотеза формирования пегматитов и еѐ ограничения. Литература: [1], с.84 - 88; [2], с. 96 -99; [3], с. 82 – 95.
Общая характеристика альбититов и грейзенов, геологические и физико-химические условия формирования. Модели образования, геохимическая зональность. Полезные ископаемые альбититовых и грейзеновых месторождений (ниобий, тантал, уран, редкие земли, бериллий, литий, молибден, вольфрам, олово).
Вопрос 1. Общая характеристика альбититов и грейзенов, геологические и физико-химические условия формирования. Альбититы и грейзены пространственно и генетически связаны с кислыми интрузивами – гранитами, щелочными гранитами, реже со щелочными магматическими породами. Их образование обусловлено постмагматическим щелочным метасоматозом, который наиболее интенсивно проявляется в апикальных частях гранитных куполов и их апофиз, т.е. в гипабиссальных условиях.
Альбитит – это лейкократовая метасоматическая порода, основная масса которой состоит из мелкозернистого альбита, а на еѐ фоне – порфировые выделения кварца, микроклина, иногда слюды, реже амфибола. К ним приурочены рудные минералы, содержащие редкие металлы, уран, цирконий, ниобий, гафний.
Грейзен состоит из легко расщепляющегося агрегата слюды (мусковита, биотита) и кварца с примесью турмалина, флюорита, топаза. Рудные минералы представлены бериллом, литиевой слюдой (циннвальдитом), касситеритом, молибденитом, вольфрамитом.
Формирование альбитит-грейзеновых месторождений происходило за счет воздействия восходящих горячих и химически агрессивных растворов на раскристаллизовавшуюся интрузивную породу. Постмагматические растворы являлись производными тех же кислых или щелочных магм, из которых формировались интрузивы. «Пропитывая» всю массу уже застывших интрузивов по пути следования вверх к кровле интрузива, растворы перегруппировывали породообразующие элементы.
Вначале развивался калиевый метасоматоз – ранняя микроклинизация, которая происходила обычно в ядерных частях массива при температурах 650580С в обстановке повышенных давлений. Затем происходила инверсия процесса и активизировался натриевый метасоматоз при температурах 550400С, что приводило к ранней альбитизации периферических зон массивов в условиях пониженного давления. Процесс происходил на фоне восходящей кислотности раствора. При этом калий выносился и сменялся натрием. Растворы оставались ещѐ надкритическими.
Максимальная кислотность растворов наступала в следующую стадию метасоматоза – стадию грейзенизации. Растворы, поднимаясь к кровле массивов и в их надапикальные части, переходили из «надкритических» в гидротермальные. Температуры при этом снижались от 450 до 200С. В условиях повышенной активности фтора, бора из интрузивных пород выносились щелочи, алюминий, рудные элементы примеси. Так, в верхних частях интрузивов и над ними формировались грейзены.
При мощных метасоматических процессах перегруппировывались и рудные элементы. Особенностью гранитоидных и щелочных пород с альбититгрейзеновыми месторождениями является то, что они сами (изначально) содержат повышенные количества некоторых рудных элементов, концентрация которых при метасоматозе приводила к формированию их промышленных скоплений. За счет рафинирования гранитоидов при метасоматозе одни металлические элементы примеси переоткладывались в альбититах, другие – в грейзенах.
Месторождения альбитового и грейзенового генезиса известны от докембрия до альпийского возраста. Примером молодых месторождений являются штоки кислых интрузивов с альбититами в районе г. Пятигорска. Докембрийские месторождения альбититов – на Украинском кристаллическом щите.
Форма рудных тел. Для альбититовых месторождений характерны штокообразные массы метасоматически преобразованных куполов и апофиз материнских изверженных пород. Их площадь достигает несколько квадратных километров, распространение на глубину – первые сотни метров (реже до 600 м).
Для грейзеновых месторождений формы тел различны:
- штокообразные тела при массовом метасоматозе (эндогрейзен); - штокверки (система мелких трещин, жил) для экзогрейзенов.
Вопрос 2. Модели образования, геохимическая зональность. Общая схема перераспределения элементов при метасоматическом преобразовании гранитоидов в альбититы и грейзены показана на рисунке 1.