Смекни!
smekni.com

Месторождения полезных ископаемых 2 (стр. 17 из 22)

Осадочные месторождения огромное промышленное значение, так как к ним относятся крупнейшие месторождения строительных материалов, солей, фосфоритов, карбонатного сырья, руд железа, марганца алюминия, цветных, радиоактивных, редких и благородных металлов (меди, урана, ванадия, серебра и др.) к ним принадлежат все месторождения горючих ископаемых – угля, нефти, газа.

Группа осадочных месторождений разделяется на четыре класса:механических, химических, биохимических и вулканогенных образований.

Вулканогенно-осадочные образования были рассмотрены ранее на проимере колчеданных месторождений.

Вопрос 2. Механогенные месторождения. Механогенные месторождения представлены месторождениями гравия, песка, глины.

Среди гравийных месторождений различаются образования временных горных потоков и конусов выноса, отложения рек, отложения ледников, прибрежные морские и озерные.

Месторождения песка подразделяются по условиям образования на элювиальные, делювиальные, пролювиальные, аллювиальные, флювиогляциальные, озерные, морские и океанические, эоловые. Наибольшее промышленное значение имеют аллювиальные, морские и озерные пески.

Месторождения глин по условиям образования различаются на месторождения кор выветривания, делювиальные, аллювиальные, озерные, морские, ледниковые, лессовые. Главные глинообразующие минералы: каолинит, галлуазит, монтмориллонит, пирофиллит, аллофан и гидрослюды. Наиболее распространены четвертичные и третичные глины, но известны мезозойские и палеозойские месторождения.

Вопрос 3. Хемогенные месторождения. Хемогенные месторождения включают месторождения солей и рассолов, образованные из истинных растворов, месторождения железа, марганца, алюминия, образованные из коллоидных растворов. Рудные формации хемогенных осадочных месторождений (гипсангидрит-галитовая, галит-карналлитовая с солями магния, содовая, рассолы с бором, йодом, бромом, щелочными и щелочноземельными металлами, бурых железняков, псиломелан-пиролюзитовая с родохрозитом, железомарганцевых конкреций, бокситовая, хемогенных известняков и доломитов).

Месторождения солей – галогенные или эвапоритовые состоят из хлоридов и сульфатов натрия, калия, магния и кальция с примесью бромидов, йодидов, боратов. По условиям образования выделяются:

1) Природные рассолы современных соляных бассейнов,

2) Соляные подземные воды,

3) Ископаемые или древние залежи солей.

Большинство геологов полагают, что ископаемые соляные месторождения формировались в обстановках аридного климата в процессе испарения относительно изолированных лагун и палеоморей. Примером являются крупные соляные месторождения в Предуралье, в Донбассе, Прикаспии.

Осадочные месторождения железа, марганца, алюминия формируются из суспензий и коллоидных растворов на дне рек, озер, морских водоемов в сходных геологических условиях. Источником материала для их формирования являются продукты континентальной коры выветривания или подводные эксгаляции вулканогенного происхождения. Отложение соединений всех трех металлов происходит в прибрежной зоне озер, морей, главным образом под воздействием электролитов, растворенных в водах этих водоемов, каогулирующих коллоиды металлических соединений и переводящих их в осадок. В ходе дифференциации соединений металлов с разной геохимической подвижностью вначале, ближе к берегу накапливаются бокситы, в верхней части шельфа – железные руды, а еще дальше, в нижней части шельфа – марганцевые руды. Дифференциация минеральной массы происходит в пределах области формирования отдельных месторождений. Это проявляется в изменении минерального состава руд по направлению от берега в глубь водоѐма. Например, для железных руд в этом направлении намечается переход от оксидов (гематит, гѐтит, гидрогѐтит) к карбонатам (сидерит) и затем к силикатам железа (хлорит типа шамозита и тюрингита).

Примером являются Керченское месторождение железа (Украина), Никопольское (Украина) и Чиатурское (Грузия) месторождения марганца, месторождения бокситов Северо-Уральского бокситоносного района (СУБР), Тихвинского района, месторождения марганца и железа на дне современных океанов (железо-марганцевые конкреции).

Вопрос 4. Седиментационно-диагенетические концентрации металлов в черных сланцах. В настоящее время большая группа промышленно важных металлов обнаруживается в так называемых черных сланцах. Формирование таких рудных скоплений связывается с различными и часто комплексными процессами, среди которых реальную роль играет их осадочное образование.

Черные сланцы битуминозной формации часто содержат рассеянную вкрапленность сульфидов железа, меди, молибдена, оксидов урана и ванадия, иногда достигающую промышленной концентрации. Кроме того, в их состав входят никель, хром, титан, кобальт, цинк, свинец, серебро, золото, цирконий, лантан, скандий, бериллий, торий и другие элементы.

Ураноносные углеродсодержащие черные сланцы известны среди осадков различного возраста от протерозойских до альпийских. Первичная концентрация урана в них низкая и составляет тысячные, - сотые доли процента. Однако огромные массы таких сланцев нередко сосредотачивают грандиозные запасы урана. Уран в них находится в формах уран-органических комплексов, сорбированных ионов и изоморфного замещения кальция в коллофане. Пример

– формация Чаттануга в США (запасы урана 5 млн. т при содержании урана в 0,066%).

Примером месторождения меди служит Мансфельд в Германии. Пласт битуминозных мергелистых сланцев мощностью 20-40 см прослеживается на расстояние нескольких километров и в нем рассеяны борнит, сфалерит, халькопирит, реже пирит, галенит, блеклая руда, самородное серебро. Руда содержит также повышенные количества молибдена, ванадия, никеля, платину, палладий, рений. В образовании таких руд также большую роль играют биохимические процессы. Руда рассматривается как продукт взаимодействия морской воды, содержащей металлы с десульфурирующими бактериями сапропелевого ила на дне моря.

Концентрация металлов, первично рассеянных в черных сланцах, существенно возрастает в результате их диагенетических преобразований. Подобные образования частично имеют биохимический генезис, так как в этих осаждении большую роль играло органическое вещество.

Первичное рассеянное накопление металлов в черных сланцах характерно и для золоторудных месторождений, которых часто называют «черносланцевыми». Однако формирование месторождений из рассеянного осадочного золота происходит только после катагенетических, метаморфических или гидротермальных преобразований золотоносных толщ, когда происходит мобилизация рудных компонентов и их вторичная концентрация в благоприятных физических и химических условиях.

Литература к вопросам 1-4:[1], с.230-247; [2], с 186-195

Вопрос 5. Биохимические месторождения, общая характеристика. Образование биохимических осадков, включающих полезные ископаемые, обусловлено способностью некоторых животных и растительных организмов концентрировать при жизнедеятельности большие количества тех или иных химических элементов. В некоторых морских организмах содержания определенных элементов во много раз превышает кларковое. Например, фтора, бора, калия, серы в организмах может быть выше кларковой в десятки раз, брома, стронция, железа, мышьяка, серебра – в сотни раз, кремния, и фосфора – в тысячи раз, а цинка и марганца – в сотни тысяч раз. Кроме того организмы накапливают редкие и рассеянные элементы. Например, в золе углей, по сравнению с литосферой, содержание германия выше в 70-120 раз, бериллия в 30-150 раз, кобальта в 30 раз, скандия в 10-20 раз, молибдена в 13 раз.

Биохимическое осадочное происхождение имеют месторождения известняков, доломитов, мергелей, диатомитов, фосфоритов, урана, ванадия, серы, а также твердых, жидких и газообразных каустобиолитов.

Главными типами биохимических осадочных месторождений являются фосфоритовый, горючих полезных ископаемых, карбонатных и кремнистых пород.

Вопрос 6. Генетические особенности месторождений фосфоритов.

Среди фосфоритов выделяются морские и континентальные. Это типичные биохимические образования. Морские фосфоритовые залежи имеют пластовую форму и обычно большую протяженность. Например, на месторождениях Каратау в Западном Казахстане зона распространения фосфоритовых пластов вытянута на 100 км при ширине 40-50 км содержит от одного до семи пластов.

Источником фосфора для фосфоритовых месторождений служит сравнительно легко растворимый апатит магматических пород. Фосфор, сносимый в морские водоемы, усваивается животными и растительными организмами. По мнению некоторых геологов, основным источником фосфора, растворенного в морской воде, является фосфор, привносимый подводными вулканическими эксгаляциями.

Отложение фосфатных соединений может осуществляться двумя способами – биологическим и биохимическим. В первом случае в результате отмирания морских организмов и скопления их на дне моря сначала происходит разложение органического вещества с образованием углекислого аммония и фосфорнокислого кальция. Затем взаимодействие этих соединений приводит к выделению фосфорнокислого аммония. Далее фосфорнокислый аммоний реагирует с известковистыми раковинами, образуя фосфорит. Данная схема приложима в основном для платформенных фосфоритов, примером которых являются Вятско-Камские месторождения, Егоревское месторождение в Подмосковье.

Более сложным биохимическим путем накапливается фосфор в области шельфа платформенных морей и океанов. Фосфоритовое месторождение может образоваться при наличии глубинного течения, направленного из глубокой части к берегу водоема. Когда глубинные холодные воды, насыщенные CO2 и P2О5, подводятся глубоководными течениями в область материкового шельфа, уменьшается парциальное давление CO2. Этому способствует уменьшение гидростатического давления, нагрев восходящих вод, диффузия избытка CO2 в обедненные углекислотой поверхностные зоны фитопланктона, а также возможное добавочное растворение этими восходящими «агрессивными» водами известковых осадков. Вследствие уменьшения парциального давления CO2 в этих восходящих слоях морской воды система ранее установившегося равновесия нарушается, и воды становятся перенасыщенными по отношению к СаСО3 и 3Сa3(PO4)2CaF22. Так возникают условия для химической садки кальцита и фосфорита, их концентрации на склоне шельфа. Пример – месторождения Каратау (Казахстан), Фосфория в США.