Смекни!
smekni.com

Коллокационная модель прогнозирования количественных характеристик основных финансовых инструментов фондового рынка (стр. 1 из 3)

Л.О. Бабешко, доцент кафедры "Математическое моделирование экономических процессов"

Аннотация

Данная работа посвящена вопросу прогнозирования характеристик основных финансовых инструментов фондового рынка при помощи модели средней квадратической коллокации (* Термин "коллокация" (англ. collocation - взаиморасположение; расстановка) после пуб-ликации работы советского математика и экономиста Л.В. Канторовича "Об одном мето-де приближенного решения дифференциальных уравнений в частных производных" (1934) широко используется в современной вычислительной математике для прибли-женного решения дифференциальных уравнений. Под коллокацией, с математической точки зрения, понимается определение функции путем подбора аналитической аппрок-симации к определенному числу заданных линейных функционалов. "Математическая" ("чистая") коллокация нашла широкое применение в технических приложениях при ре-шении интерполяционных задач. Дальнейшее обобщение теории коллокации связано с применением к объектам стохастической природы и вслед за работами Г. Морица (на-пример: Moritz H. Least-Squares Collocation // Reviews of Geophysics and Space Physics. V. 16. No. 3. Aug. 1978. P. 421-430) под коллокацией понимается обобщение метода наименьших квадратов на случай бесконечномерных гильбертовых пространств.). Коллокационная модель прогнозирования сохраняет основные преимущества классических регрессионных моделей - инвариантность по отношению к линейным преобразованиям исходных данных и результатов, оптимальность решения (в смысле наиболее точного прогноза из всех возможных вариантов линейных решений на основе заданных исходных данных) - и имеет дополнительные достоинства: результат не зависит от числа оцениваемых величин; как наблюдаемые, так и оцениваемые величины могут быть разнородными (иметь различную физическую, экономическую или математическую природу). Коллокационная модель может быть использована не только для построения оптимального прогноза однородных данных, но и для оценивания любых интересующих характеристик финансовых инструментов фондового рынка по неоднородной исходной информации (доходностей, курсов, объемов продаж, индексов и т.д.).

Потребность в прогнозировании как специфическом научно-прикладном анализе (нацеленном на будущее или учитывающем неопределенность, связанную с отсутствием или неполнотой информации) возникает со стороны самых разнообразных областей человеческой деятельности – политики, международных отношений, экономики, финансов и т.д.

Предвидение вероятного исхода событий дает возможность заблаговременно подготовиться к ним, учесть их положительные и отрицательные последствия, а если это возможно – вмешаться в ход развития, что особенно важно в финансовой сфере, подверженной различного рода рискам.

В общем виде задачу прогнозирования можно сформулировать следующим образом: по имеющейся информации X (измерениям, наблюдениям) требуется предсказать (спрогнозировать, оценить) некоторую величину Y, стохастически связанную с X. Например, по имеющейся информации о динамике цен на ту или иную ценную бумагу оценить ее значение на какой-то период в будущем или оценить доходность одних ценных бумаг, используя информацию о доходности других ценных бумаг, и т.д.

Искомое значение Y можно оценить различными способами, но в любом случае это приближенное значение будет базироваться лишь на исходной информации:

.

Различные функции  определяют различные методики прогноза оценки Y. Ниже мы рассмотрим методику линейного стохастического прогнозирования.

Итак, пусть имеется два множества случайных величин: множество значений независимой переменной (измерений)

, образующих n-мерный вектор-столбец, и множество значений зависимой переменной (сигналов)
, образующих m-мерный вектор-столбец (значок ( ) – означает транспонирование).

Предполагается, что каждая из переменных является центрированной случайной величиной, т.е. имеет математическое ожидание равное нулю:

E{X} = 0, E{Y} = 0. (1)

Если это не так, то выполняется центрировка, то есть значения E{X} 0 и E{X} 0 вычитаются из заданных значений переменных X и Y соответственно.

Пусть имеется дополнительная информация в виде ковариационных функций:

1) автоковариационных функций векторов X и Y,

(2)

(3)

где Xj = X(tj) – значение переменной в момент tj, j=1, … , n,

Yk = Y(tk) – значение переменной в момент tk, k=1, … , m,

 – интервал времени между соответствующими моментами;

2) взаимных ковариационных функций между X и Y

(4)

По данным ковариационным функциям для различных интервалов  можно составить соответствующие ковариационные матрицы:

,
,
,
. (4)

Предполагается, что данные ковариационные матрицы имеют полный ранг, т.е. ранг равный наименьшему из чисел m и n.

Задача состоит в оценке вектора Y по измеренным значениям вектора X. Причем связь между векторами будет определяться не через функциональное соотношение, а только через ковариационные матрицы (4) .

Ограничиваясь методикой линейного прогноза, будем искать оценку вектора Y в виде

, (5)

или в координатной форме:

, i=1, …, m,

т.е. каждый элемент вектора Y аппроксимируется линейной комбинацией исходных данных X = (X1, X2, ..., Xn)'.

Ошибка аппроксимации (вектор ошибок) определяется как разность между истинным значением переменной и оценкой

 = Y –

. (6)

Ковариационная матрица и дисперсии ошибок определяются по формулам

, (7)

(8)

соответственно. Согласно общей теории статистического оценивания наилучшая (оптимальная) линейная оценка определяется как несмещенная линейная оценка с минимальной дисперсией. Несмещенность линейной оценки (5) проверяется непосредственно

,

с учетом (1) и свойств математического ожидания.

Для того чтобы дисперсия линейной оценки (5) была минимальной, матрица H должна определяться из следующих соображений.

Ковариационная матрица ошибок для произвольной матрицы H имеет вид:

.

Вычитая из правой части квадратичную форму

и добавляя ее, а также домножая члены
на единичную матрицу E =
, можно представить ковариационную матрицу ошибок в виде суммы двух матриц:

=
+
+
=

=

,

где A =

, B =
.

Матрица А одинакова для всех линейных оценок, так как она не зависит от матрицы H. Заметим, что элементы матрицы В являются неотрицательными числами (поскольку ковариационная матрица Kxx является невырожденной, а как известно, все невырожденные ковариационные матрицы положительно определены), поэтому диагональные элементы матрицы K  , представляющие собой дисперсии ошибок, будут наименьшими только в том случае, когда матрица В является нулевой

B =

= 0. (9)

Отсюда следует, что дисперсии ошибок будут минимальными, если матрица Н определяется выражением

. (10)

Таким образом, выражение для оптимальной (несмещенной, с минимальной дисперсией) линейной оценки получается подстановкой в формулу (5) выражения (10):

. (11)

При этом ковариационная матрица ошибок прогнозирования переменной Y с учетом (9) принимает вид

K  = KYY –

. (12)

При практической реализации алгоритма прогнозирования (11) целесообразно сначала вычислить вектор C