3.1. W(a,r,q) = a;
3.2. W(a,r,q) = (1-q)a;
3.3. W(a,r,q) = a-r;
3.4. W(a,r,q) = (1-q)a-qr.
То, что каждая их этих функций обладает свойствами (4), можно проверить по знаку частных производных.
В критерии 3.1 показателями игры являются выигрыши: Wij=aij, а потому он не учитывает ни рисков, ни вероятностей состояний природы. Критерий 3.1 является критерием Вальда ([1], с. 504; [3], с. 91; [5], с. 56), позволяющим обосновать выбор решения в условиях полной неопределенности, т.е. в условиях незнания вероятностей состояний природы. Критерий 3.2 учитывает выигрыши и вероятности состояний природы, но не учитывает риски. В критерии 3.3 учитываются выигрыши и риски без учета вероятностей состояний природы. И наконец, в критерии 3.4 учитываются выигрыши, риски и вероятности состояний природы.
Минимаксные критерии (крайнего пессимизма).
Для минимаксного критерия функцию игры обозначим через S(a,r,q). Она должна быть невозрастающей по выигрышу а и неубывающей по риску r и по вероятности q состояний природы:
S(a,r,q) Ø по а; Ú по r; Ú по q. (5)
Тогда Sij = S(aij, rij, qj ) – показатели игры. Показатели стратегий определяются следующим образом:
Стратегия
В силу (7) показатели Si являются показателями неоптимальности стратегий Аi.
То, что функция игры S(a, r, q) должна обладать свойствами (5) мотивируется аналогично мотивировке в п. 3 с учетом (6) и (7).
Приведем некоторые минимаксные критерии с конкретными функциями игры S(a,r,q), удовлетворяющими условиям (5):
4.1. S(a,r,q) = r;
4.2. S(a,r,q) = qr;
4.3. S(a,r,q) = r-a;
4.4. S(a,r,q) = qr-(1-q)a.
Критерий 4.1, в котором показатели игры – риски, не учитывает ни выигрышей, ни вероятностей состояний природы. Это есть критерий Сэвиджа ([1], с. 504; [3], с. 92, [5], с. 57).
Сравнивая максиминные и минимаксные критерии, можно высказать следующее.
Утверждение 1. Максиминные критерии 3.3 и 3.4 эквивалентны соответственно минимаксным критериям 4.3 и 4.4:
3.3 Û 4.3, 3.4 Û 4.4.
Первая их этих эквиваленций означает, что стратегия Ai является оптимальной по критерию 3.3 тогда и только тогда, когда она оптимальна по критерию 4.3.
Аналогичное объяснение относится и ко второй эквиваленции.
Доказательство. Докажем сначала эквиваленцию 3.3 Û 4.3. Так как функции игры W и S соответственно критериев 3.3 и 4.3 удовлетворяют равенству S = –W, то и показатели игры удовлетворяют аналогичному равенству Sij = –Wij. Тогда
откуда
Таким образом, Si будет минимальным для номера i, для которого Wi будет максимальным, и эквиваленция 3.3 Û 4.3 доказана.
Совершенно аналогично доказывается и эквиваленция 3.4 Û 4.4. n
Максимаксные критерии (крайнего оптимизма).
В данном случае функция игры, которую мы обозначим через M(a, r, q), должна не убывать по выигрышу
M(a, r, q) Ú а; Ø по r; по Ú q. (8)
Показатели игры Mij= M(aij, rij, qj). Показатели оптимальности стратегий
Оптимальной называется стратегия Ai0, для которой
Максимаксные критерии являются критериями крайнего оптимизма, поскольку предполагают, что природа будет находиться в наиболее благоприятном для игрока А состоянии и потому в качестве оптимальной выбирается стратегия, при которой максимальный показатель игры – показатель оптимальности максимален среди максимальных показателей всех стратегий.
В качестве максимаксных критериев с конкретными функциями игры M(a, r, q), обладающими свойствами (8), можно взять, например, следующие:
5.1. M(a, r, q) = а;
5.2. M(a, r, q) = qa;
5.3. M(a, r, q) = a-r;
5.4. M(a, r, q) =qa-(1-q)r.
В критерии 5.1 показателями игры являются выигрыши Mij = aij, и мы получаем максимаксный критерий относительно выигрышей ([2], с. 42).
Миниминные критерии (крайнего оптимизма).
Функция игры, обозначим ее через E(a, r, q), выбирается невозрастающей по выигрышу а и по вероятности q состояний природы и неубывающей по риску r:
E(a, r, q) Ø по а; Ú по r; Ø по q. (9)
В качестве показателей неоптимальности стратегий Аi берутся
где Eij = E(aij, rij, qi) – показатели игры.
Оптимальной назначается стратегия Ai0, минимизирующая показатель неоптимальности
Миниминные критерии также являются критериями крайнего оптимизма, поскольку под оптимальной стратегией понимается стратегия, при которой показатель неоптимальности минимален среди показателей неоптимальности всех стратегий.
Примерами миниминных критериев с функциями игры E(a, r, q) со свойствами (9) могут быть:
6.1. E(a, r, q) = r;
6.2. E(a, r, q) = (1–q)r;
6.3. E(a, r, q) = r –a;
6.4. E(a, r, q) = (1–q)r –qa.
Показателями игры в критерии 6.1 являются риски, и он, таким образом, превращается в миниминный критерий относительно рисков.
Утверждение 2. Максимаксные критерии 5.3 и 5.4 эквиваленты соответственно миниминным критерием 6.3 и 6.4:
5.3 Û 6.3, 5.4 Û 6.4.
Доказательство аналогично доказательству утверждения 1, а именно для критериев 5.3 и 6.3 имеем: E = –M и, следовательно, Eij = –Mij, откуда
Поэтому
Таким образом, эквиваленция 5.3 Û 6.3 доказана.
Аналогично доказывается и эквиваленция 5.4 Û 6.4. n
Для лучшей обозримости стрелок, указывающих в (4), (5), (8) и (9) на невозрастание или неубывание функций игры рассмотренных критериев в пп. 3, 4, 5, 6 в зависимости от выигрышей а, рисков r и состояний природы q, сведем их в следующую таблицу.
Таблица 1
Аргументы | Функции игры и критерии | |||
функций игры | W(a, r, q) | S(a, r, q) | M(a, r, q) | E(a, r, q) |
max min | min max | max max | min min | |
a | Ú | Ø | Ú | Ø |
r | Ø | Ú | Ø | Ú |
q | Ø | Ú | Ú | Ø |
Из этой таблицы видно, что стоящие в первой строке стрелки, обозначающие поведение функций игры в зависимости от выигрышей а, соответствуют первому значку в названии критерия: max – Ú , min – Ø , ,max – Ú , min – Ø . А стрелки во второй строке, обозначающие поведение функций игры в зависимости от рисков r , противоположны стрелкам первой строки.
Критерии максимизации взвешенного среднего показателя оптимальности стратегий.
Функция игры L(a, r, q) должна неубывать по выигрышу a и невозрастать по риску r :
L(a, r, q) Ú по а; Ø по r. (10)
Показатели оптимальности стратегий Ai0 определяются следующим образом:
где Lij = L(aij, rij, qj) – показатели игры.
По определению оптимальной является стратегия Ai0, максимизирующая показатель оптимальности Li:
В качестве функций игры L(a, r, q), удовлетворяющих условиям (10), можно взять функции:
7.1. L(a, r, q) = qa;
7.2. L(a, r, q) = q(a-r).
Если в критерии 7.1 q1 = ... qn =
а показатели оптимальности стратегий Ai превращаются (см. (11)) в среднее арифметическое выигрышей при стратегии Ai:
Такой критерий был предложен Байесом ([2], с. 119; см. также сноску на с. 2). Этот критерий также называют ([1], c. 503) "критерием недостаточного основания" Лапласа (т.е. у нас нет достаточного основания отдать предпочтение какому-нибудь состоянию природы).
Если в критерии 7.1 вероятности состояний природы q1, …, qn различны, то показатели игры
а показатели оптимальности стратегий Ai будут представлять собой взвешенное среднее выигрышей при стратегии Ai, взятых с весами q1, …, qn:
Получившийся критерий называют критерием Лапласа ([2], c. 119.).
Критерии минимизации взвешенного среднего показателя неоптимальности стратегий.
Для данного критерия функция игры K(a, r, q) невозрастает по выигрышу а и неубывает по риску r:
K(a, r, q) Ø по а; Ú по r, (12)
показатели игры Kij= K(aij, rij, qj), показатели неоптимальности стратегий Ai
Оптимальной считается стратегия Ai0, минимизирующая показатель неоптимальности Ki:
Примерами таких критериев с функциями игры K(a, r, q), удовлетворяющими условиям (12), могут служить критерии:
8.1. K(a, r, q) = qr;
8.2. K(a, r, q) = q(r-a).
В критерии 8.1 показатели неоптимальности стратегии Ai представляют собой взвешенное среднее рисков при стратегии Ai с весами q1, …, qn, и критерий 8.1, таким образом, является критерием минимизации взвешенного среднего риска.