Смекни!
smekni.com

Уравновешивание геодезических сетей сгущения и систем ходов плановой съемочной сети (стр. 5 из 7)

а=143°15,8'

Контроль: ω[P]= 0

2.1.2.5. По формулам общей арифметической средины:

где α0- приближенное значение искомого дирекционного угла, ε1 - остаток, определяемый по формуле:

(i=1,2,3) (26), вычислить окончательное значение дирекционного угла α.

2.1.2.6. Вычисляем угловые невязки ходом для правых углов по формуле:

(27),

для левых углов по формуле:

(28)

Полученные значения невязок записать в графу 7 таблицы 13. Выполнить контроль вычисления невязок по формуле: [pfβ] =0

Вследствие ошибок округлений это равенство может не выполняться.

В этом случае [pfβ]=ω[P] (30),

где ω- ошибка округления при делении [ Pε ] на [ p ].

2.1.2.7. Полученное окончательное значение дирекционного угла α узловой линии в дальнейшем принимают за твердое и записывают в графу 4 таблицы 12. Затем вычисляют теоретические суммы углов по каждому ходу по формулам:

• для правых углов

• для левых углов

где αн и αк - начальный и конечный углы хода, найти угловые невязки и сличить их с полученными в графе 7 таблица 12, учитывая, что невязки для правых и левых углов одного и того же хода противоположны по знаку (ход 1).

Если полученные невязки меньше предельных, то распределим их с противоположным знаком поровну на углы соответствующих ходов (с округлением до 0,1').

2.1.2.8.Вычисляем дирекционные углы по формулам:

• для правых углов: α1=αi-1+180˚-βi (33)

• для левых углов: α1=αi-1+180˚-λi

Таблица 14

Вычисление окончательных значений координат узловой точки 3.

№№хода X,м εx`см Pεx`см fx`см Pfx`см Sкм

k=4

Pfy`см fy`см Pεy`см εx`см Y,м
1 2 3 4 5 6 7 8 9 10 11 12 13
1 2726,02 0,18 1,44 +0.04 +0.32 0.5 8 +0.72 +0.07 +2,56 +0,32 4118,04
2 2725,84 0,18 0 -0.14 -0.56 1.0 4 0 0,36 +1,28 +0,32 4118,04
3 2726,02 +0.2 +0,9 +0.04 +0.20 0.8 5 -0.6 -0,23 0 0 4117,72

X0 = 2725,84 [pεx]= 2.34 [pfx]= -0,04 [p]= 17

y0=4402.09 [pfy]= +0,07 [pεy]= -3,84

X= 2725,98 y=4117,95

Контроль: ωx[p]=0,06 ωy[p]= 0,05

2.1.2.9. Вычисляем приращения координат и их суммы (см. таблицу 12), а затем - координаты узловой точки по всем трем хода. Результаты вычислений записать в графы 2 и 13 таблицы 14.

Проверка допустимости линейных невязок

№№ ходов Si+j м Fx=xi-xj Fy=yi-yj fабс Fотн м
1 2 3 4 5 6
1+2 1600 +0.18 0 +0.18 1:8900
2+3 1923 -0.18 +0.32 +0.37 1:5200

2.1.2.10. Оцениваем качество измерений, вычислив для этого невязки по ходам: по первому - вместе со вторым и по второму - вместе с третьим.

Для этого составляем разности координат по соответствующим парам ходов:

Fx=xi-xj

Fy=yi-yj (34)

Одна пара ходов берется с наименьшими периметрами. Подсчеты невязок выписываем внизу таблицы 14.

Относительные невязки не должны превышать 1:1000.

2.1.2.11. Вычисляем веса значений координат узловой точки по формуле:

в которой

Si - длина соответствующего хода, выражаем в километрах;

k — произвольный коэффициент, выбираем с таким же расчетом, как и при вычислении дирекционных углов. Результаты вычислений записываем в графу 8 таблица 14.

2.1.2.12. По формуле общей арифметической средины:

где x0 , y0 - приближенные значения координат Х и У,

εxi ,εyi - величины определенные по формулам:

εxi=xi-x0

εyi=yi- y0 (37)

Вычисляем окончательные значения координат узловой точки Х и У. Полученные значение записываем в таблицу 12.

2.1.2.13. Вычисляем невязки приращений координат для каждого хода по формулам:

fx=xi-x0

fy=yi-y0 (33)

и записываем их в графы 5 и 10 таблицу 14.

Выполняем контроль вычисления Х и У и невязок по формулам:

[pfx]=-ωx[p] (39) , [pfy]=-ωy[p] (40)

где ωx и ωy - ошибка округлений при делении [pεx] и [pεy] на [p].

2.1.2.14. Вычисляем для каждого хода в ведомости координат (таблица 12) вторично невязки по формулам:

где

и
- измеренные суммы приращений координат по каждому ходу;

Xi и Yi - координаты начальной точки соответствующего хода;

X3 и Y3 - координаты узловой точки (точка 3).

Эти невязки сличают с полученными ранее.

Данные подсчитываем по каждому ходу fабс и fотн. Если последнее не превышают 1:1000, то невязки в приращениях координат распределяем на соответствующие приращения с противоположными знаками, пропорционально длине линий.

Затем в графах 8 и 9 таблица 12 вычисляем исправленные приращения координат.

2.1.2.15. По исправленным приращениям координат вычисляем координаты всех точек (графы 10 и 11 таблица 12).

2.2 Уравновешивание углов сети теодолитных ходов по способу полигонов профессора В.В.Попова

2.2.1 Задание

Уравновесить углы и вычислить дирекционные углы сторон сети, изображенной на рисунке 6.

Исходные данные.

№№ варианта Дирекционные углы
αАВ αСD
24 353°08,2' 35°20,1'

Рис.6 Схема полигонов


2.2.2 Порядок решения

2.2.2.1. Подсчитываем число полигонов, включая и несомкнутый полигон между твердыми (исходными) сторонами АВ и CD.

2.2.2.2. Исправить непосредственно на схеме полигонов (рисунок 6) сумму углов при каждой внутренней узловой точке (15 и 9) для соблюдения условий горизонта (360°), внеся поправки поровну на каждый угол до десяти долей минуты. Поправки записываем на схеме у соответствующих углов в десятых долях минуты. Например, поправку +0,1' записываем в виде +1.

2.2.2.3. Подсчитываем сумму измеренных углов в каждом полигоне с учетом поправок за условие горизонта и записываем ее на схеме внутри соответствующего полигона (см. рисунок 6). Несомкнутый полигон IV, включающий твердые линии АВ и CD условно считаем сомкнутыми при помощи пунктирной линии. Число углов, сторон или направлений по этой пунктирной линии в процессе вычислений считается равным нулю.

Под практической суммой углов в каждом полигоне записываем сумму углов теоретическую, причем по полигону IV теоретическую сумму углов следует вычислять по формуле:

Вычисляем для каждого полигона полученную невязку в сумме углов

и сравниваем ее с предельной,

где n- число углов полигона.

Полученные предельные невязки записываем на схеме (см. рис. 6) под соответствующими суммами углов в каждом полигоне.

2.2.2.4. Составляем схему сети теодолитных ходов для уравновешивания углов (рисунок 7). На этой схеме выписываем номера узловых точек и полигонов. Внутри каждого полигона под его номером заготовить табличку невязок и около каждого звена, кроме пунктирного, таблички поправок. В таблички записываем полученные невязки.

2.2.2.5. Вычисляем красные числа для каждого звена всех полигонов по правилу: красное число звена равно числу направлений в звене, деленному на число направлений в полигоне.

При этом каждую линию в замкнутых полигонах |,||, и ||| а в полигоне IV твердые линии АВ и СD считаем каждую за одно направление. Поэтому на чертеже пунктирная линия, условно замыкающая полигон, вычерчивается у середины твердых линий, включая в полигоне не целые линии, а одно направление.

Контроль: сумма красных чисел по каждого полигону должна быть точно равна единице. Красные числа выписать красным цветом под соответствующими табличками.

2.2.2.6.Распределяем невязки пропорционально красным числам соответствующих полигонов. Начинаем с полигона, имеющего наибольшую по абсолютной величине невязку, умножая, ее последовательно на красные числа звеньев данного полигона и вносим произведения в соответствующие таблички поправок со знаком невязки, с округлением до 0.1΄

2.2.2.7. Подсчитываем алгебраические суммы чисел, а таблицу поправок и записываем их над двойной чертой.

Подсчитываем поправки во внутренние углы каждого полигона по всем звеньям. Для внутренних звеньев сети поправки получаем так: изменяем знак суммы чисел внешней по отношению к полигону таблички и складываем с суммой чисел внутренней таблички того же знака. Для каждого внешнего звена сети поправка равна итогу внешней таблички с противоположным знаком. Все поправки на звенья записываем в скобках внутри полигона у соответствующих звеньев (см. рис. 7).

Контроль вычислений поправок: их сумма по каждому полигону должна быть равна невязке полигона с обратным знаком.