Смекни!
smekni.com

Стандартный аукцион с участниками торгов, которые имеют ограниченные финансовые возможности (перевод) (стр. 4 из 10)

Доказательство. Т.к.

доминирует над
,

Эти два равенства следуют из (5), и неравенство следует т.к.

для всех
.[20] Очевидно,
для интервала v. ||

Т.к. более плоские кривые изобиды, указывают, что претенденты меньше затруднены финансовыми ограничениями, можно было бы ожидать, что конкуренция будет более жестокой, когда кривые изобиды более плоские. Это предположение подтверждено ниже.

Заключение. Если аукцион А удовлетворяет единственному общему свойству относительно аукциона B, тогда А приносит ожидаемый доход слегка выше, чем B. Оценка точна, если единственное общее свойство строго выполняется.

Доказательство. По определению, единственное общее свойство подразумевает

для любого активного типа (
, v), который подразумевает что
. Таким образом, результат следует из Теоремы 2. Точная оценка аналогично. ||

3. АУКЦИОНЫ С ВЫНУЖДЕННЫМИ БЮДЖЕТОМ ПРЕТЕНДЕНТАМИ

В следующих двух разделах, мы используем результаты предшествующего раздела, чтобы сравнить первичные и вторичные аукционы. В первом аукционе, лицо, предлагающее самую высокую цену выигрывает и оплачивает свое предложение; на последнем, лицо, предлагающее самую высокую цену выигрывает и платит второе – самое высокое предложение вторичной цены (или резервную цену, если никакой другой претендент не вступает в торги). Первичные аукционы часто используются, чтобы продать правительственные права, типа прав на добычу полезных ископаемых, и чтобы заключать контракты по закупке для Американского Департамента Обороны и Департамента транспорта, например. Вторичные аукционы используются в форме стратегического эквивалента - открытые устные аукционы, чтобы продать права на заготовку древесины.

В этом разделе, мы сосредоточимся на претендентах, которые стоят перед абсолютными ограничениями на то, что они могут потратить. (Мы рассмотрим более общий случай в следующем разделе.) Определенно, претендент типа – (w, v) терпит убытки стоимостью

Когда он тратит x. Полезно исследовать этот специальный случай, так как здесь мы можем характеризовать равновесие и показывать его существование в каждой форме аукциона. Кроме того, возможно сравнение и доход и социального активного сальдо. Мы предполагаем, что

, что является достаточным для того чтобы Предположения 1-4, выполнялись. Второе неравенство делает присутствующее ограничение бюджета значительным.

Прежде чем продолжать дальше мы должны рассмотреть возможность, что покупатель предлагает больше чем его бюджет и затем меняет своё предложение. Мы предполагаем, что продавец не продаст объект покупателю, который меняет своё предложение, и что он также налагает на него небольшой штраф.[21] На первичном аукционе, победитель оплачивает своё предложение, поэтому предложить больше чем его бюджет не будет оптимальным, учитывая такую ответную реакцию продавца. Если предложение выигрывает, штраф делает чистое активное сальдо покупателя отрицательным, в то время как не имеется никакой выгоды, если предложение не побеждает. Теперь рассмотрим вторичный аукцион, и предположим, что претендент побеждает с предложением превышающим его бюджет. Или претендент победил бы так или иначе с той же самой оценкой (то есть вторторичное - самое высокое предложение - ниже бюджета победителя) или он побеждает с оценкой выше его бюджета, что приводит к отрицательному активному сальдо. Еще раз, это - доминирующая стратегия предлагать выше своего бюджета.

A. Вторичные аукционы

Пусть резервная цена

. Тогда, только покупатели с минимумом
будут участвовать. Мы показываем, что доминирующая стратегия для участвующего покупателя, это предложить минимум
. Если, то ограничение бюджета не стесняется, так что доминирующая стратегия - предложить
, следуя Vickrey (1961). Если
, тогда тот же самый аргумент подразумевает, что предложение цены
, доминирует над предложением цены менее строго, т.к. с предложения цены выше бюджета, также доминируют, доминирующая стратегия состоит в том, чтобы предложить свой бюджет в этом случае. Графически, стратегия представлена семейством кривых изобид Леонтьева с петлями на линии 45 градусов (смотри типичную кривую изобиды на Фигуре 3). Предлагающая цену стратегия ясно удовлетворяет P1-P4.

Рассмотрим претендента с (

, v),
. Набор типов, которые не участвуют или которые предлагают более низкую цену:

Пусть G (w, v) обозначает вероятность того что w ' < w или v ' < v

Произвольно выбранный покупатель находится в

с вероятностью
.

B. Первичные аукционы

Пусть

- резервная цена. Покупатель i участвует тогда и только тогда когда минимум
. Мы рассматриваем функции предложения равновесия формы
для некоторой непрерывной, строго возрастающей функции
. (Позже мы покажем, что любое симметрическое равновесие должно выбрать эту форму, данную условием средней непрерывности). Стратегия предложения цены снова приводит к кривым изобидам Леонтьева, с добровольными претендентами, принимающими стратегию
(см. Фигуру 3). Теперь мы охарактеризуем
.

Рассмотрим претендента с (

, v), для любого
, т.к.
, такой претендент должен быть добровольным. В равновесии, набор типов, которые не участвуют или которые предлагают более низкую цену предложения, чем претендент типа - (
, v)

Произвольно выбранный покупатель находится в этом наборе с вероятностью

Проблема, стоящая перед претендентом с (
, v) такая же самая, как если бы все претенденты были добровольны, с оценками, взятыми из распределения
. Стандартный результат без ограничений бюджета (например, Riley и Samuelson (1981)) тогда подразумевает, что симметрическая функция предложения равновесия должна удовлетворить условию:

для
. (6)

В существование

нет необходимости, однако, т.к.
зависит от
непосредственно. Следующее техническое предположение гарантирует существование единственной функции предложения равновесия.

Предположение 5. (N- l) w + (G (w, v)) / (

(w, v)) строго увеличивается в w для всех
.[22]

Лемма 1.Согласно Предположению 5, существует единственное, симметрическое равновесие, в котором претенденты с минимумом

используют функцию предложения
, где
удовлетворяет (6), и является непрерывной и строго возрастающей.