Смекни!
smekni.com

Повышение эффективности технологии разработки глубокозалегающего Тундрового месторождения Кольск (стр. 2 из 3)

Решение заключается в многоступенчатой отработке рудного тела при ведении работ в пределах первой ступени в восходящем, а в пределах второй – в нисходящем порядке (невозможность применения восходящего порядка для отработки запасов второй ступени была обоснована в первом защищаемом положении). При этом, чем больше высота первой ступени вскрытия, тем больше первоначальные капитальные затраты на строительство рудника и больше запасы рудного тела, подлежащие отработке в восходящем порядке при меньших эксплуатационных расходах по системе разработки.

Для установления оптимальной глубины первой ступени вскрытия была составлена экономико-математическая модель (рис. 2). Как показал анализ входящих в нее величин, учет капитальных затрат и эксплуатационных расходов как первой, так и второй ступени вскрытия существенно влияет на значение критерий оптимизации, в качестве которого принята величина приведенных затрат.

Для автоматического расчета зависимости приведенных затрат от глубины первой ступени вскрытия и угла падения рудного тела, разработанная модель была реализована в программах Borland Delphi и Microsoft Excel. В результате проведенных расчетов были установлены зависимости капитальных затрат, эксплуатационных расходов и приведенных затрат от глубины первой ступени вскрытия и угла падения рудного тела.

Рис. 2. Экономико-математическая модель определения оптимальной глубины первой ступени вскрытия.

Зависимость приведенных затрат от глубины первой ступени вскрытия при различных углах падения рудного тела для условий рассматриваемого Тундрового месторождения (рис. 3) не имеет характерного оптимума. Можно сделать вывод, что глубина первой ступени должна быть не меньше 700-800 м. При большей глубине приведенные затраты практически не меняются. Это говорит о том, что вопрос о ее рациональной величине в данном случае должен решаться на основании анализа других факторов: организационно-технических (годовой производственной мощности предприятия, организации проведения слепых стволов), инвестиционных (наличие средств для финансирования вскрытия на всю глубину, учет процента банковских кредитов), экологических и др.

Рис. 3. Зависимость приведенных затрат от глубины первой ступени вскрытия и угла падения рудного тела.

Комбинированный восходяще-нисходящий порядок выгодно отличается от традиционного нисходящего порядка (рис. 3, «60 град. нисх») по величине приведенных затрат. Разница между ними для глубины первой ступени вскрытия 800 м. составляет на 20%.

В результате анализа результатов экономико-математического моделирования, перечисленных выше организационно-технических и инвестиционных факторов, рекомендуемая глубина первой ступени вскрытия составляет 800 м.

3. Размеры искусственных монолитных целиков при многостадийной системе разработки должны определяться не только по величине горного давления пород висячего бока, но и с учетом активного давления сыпучей породной закладки камеры второй очереди; для условий Тундрового месторождения длина камер I очереди составляет 8 м, длина камер II очереди составляет 40 м, прочность твердеющей закладки – 3 МПа.

В настоящее время на рудниках России широкое распространение получил класс многостадийных систем разработки, заключающихся в том, что выемочный блок делят на несколько камер без оставления рудных целиков, которые последовательно отрабатывают одинаковым вариантом системы разработки. Камеры первой очереди заполняют твердеющей закладкой, создавая искусственные целики между камерами второй очереди. Камеры второй очереди отрабатывают под защитой искусственных целиков и заполняют преимущественно сыпучей породной закладкой.

Анализ удельных затрат на добычу руды в блоке показал, что затраты на закладочные работы в ряде случаев составляют до 60 % от общих затрат на добычи руды, что связано с высокой стоимостью твердеющей закладки. Для снижения данного показателя необходимо уменьшить использование твердеющей закладки путем уменьшения размеров камер первой очереди и увеличения размеров камер второй очереди. Однако, чрезмерное уменьшение размеров искусственных монолитных целиков приведет к тому, что либо потребуется увеличить их прочность и соответственно затраты на их создание, либо они перестанут выполнять свою функцию по поддержанию пород висячего бока и будут разрушены.

В данной технологии имеет место следующая геомеханическая ситуация (рис. 4). Искусственный монолитный целик, нагружен со стороны висячего и лежачего боков горным давлением пород висячего бока. Кроме того, он испытывает активное давление сыпучей породной закладки, расположенной в соседней камере второй очереди. Критический момент наступает, когда с одной стороны искусственного целика находится сыпучая породная закладка, а с другой стороны – отработанная, но еще не заложенная камера (пустое пространство). Искусственный целик – подпорная стенка при этом испытывает максимальное давление сыпучей породной закладки, стремящееся его разрушить.

Рис. 4. Расчетная схема определения параметров системы разработки

Для оценки устойчивости искусственного целика при различных углах падения рудного тела был смонтирован стенд и проведено физическое моделирование на эквивалентных материалах влияния горного давления пород висячего бока и активного давления сыпучей породной закладки соседней камеры второй очереди на напряженно-деформированное состояние искусственного целика (рис. 5).

В качестве эквивалентных материалов использовалась твердеющая закладка, состоящая из смеси песка, цемента, воды и жидкого стекла. Сыпучая закладка моделировалась дробленой породой крупностью 3-5 мм. Давление пород висячего бока моделировалось пневматической камерой. Активное давление создавалось сыпучей закладкой. Для измерения деформаций применялись датчики часового типа ИЧ-10. Замерялись деформации искусственного целика в направлении открытой камеры, в направлении камеры заполненной сыпучей породной закладкой, а также смещение пород висячего бока.

В результате проведения эксперимента были получены значения абсолютных поперечных деформаций искусственного целика при различных углах падения рудного тела (рис. 6). Они показали, что при малых (10-350) и больших (75-900) углах падения рудного тела деформации искусственного целика. Минимальные деформации получены при угле падения 40-500 - они составили 1,095 мм. Таким образом, в результате проведения физического моделирования было установлено, что угол падения рудного тела существенно влияет на деформации искусственного целика при многостадийной системе разработки.

Для расчета оптимальных параметров искусственного целика была составлена экономико-математическая модель, учитывающая действующие на целик нагрузки со стороны пород висячего бока и сыпучей закладки камеры второй очереди, и экономические затраты на его создание. В результате проведения экономико-математического моделирования для условий Тундрового месторождения были получены зависимости изменения прочности твердеющей закладки камеры первой очереди и удельных затрат на закладку блока от длин камер первой и второй очереди, а также от угла падения рудного тела.

Оптимальные параметры системы разработки определяются на основании анализа зависимости удельных затрат на закладочные работы от длины камер второй очереди при различной длине камер первой очереди (рис. 7). При небольшой длине камер второй очереди искусственные целики хоть и обладают небольшой прочностью, но расположены слишком часто в пределах этажа, что повышает удельные затраты на закладочные работы. При очень большой длине камер второй очереди невысокие затраты на закладку этажа преимущественно дешевой породной закладкой нивелируются увеличением прочности искусственных целиков, а следовательно и затратами на их создание. Оптимальными для Тундрового месторождения являются следующие параметры системы разработки: длина камер первой очереди – 8 м; длина камер второй очереди – 40 м; прочность твердеющей закладки – 3 МПа.

При исследовании зависимости размеров искусственного монолитного целика от угла падения рудного тела (рис. 9) было установлено, что сыпучая породная закладка существенно влияет на их устойчивость. При малых (10-300) углах падения рудного тела напряженно-деформированное состояние искусственных целиков определяется горным давлением вмещающих пород. При крутых (70-900) углах падения напряженно-деформированное состояние искусственного целика определяется активным давлением сыпучей породной закладки соседней камеры второй очереди, которое имеет максимальное значение. Горное давление при этом минимально и определяется величиной бокового распора вмещающих пород. Уменьшение угла падения ведет к снижению величины активного давления и постепенному росту значений горного давления, которые, как было отмечено выше, достигают своего максимума при пологом залегании рудого тела.