Министерство образования и науки РФ
Государственное образовательное учреждение
высшего профессионального образования
«Тульский государственный университет»
Кафедра геоинженерии и кадастра
Контрольно курсовая работа по дисциплине:
«Аэрокосмические съемки»
На тему:
«Современные концепции дистанционного зондирования»
Выполнил: ст. гр. 331861 Мурашов С.Г.
Проверил: проф. Басова И.А.
Содержание.
2.1NDVI (Normalized Difference Vegetation Index).3
2.2Гиперспектральная система MODIS.3
3.Мониторинг сельскохозяйственного назначения.3
3.2Структура системы дистанционного мониторинга земель с/х назначения.3
3.4Пример комплексного подхода к мониторингу сельскохозяйственных территорий3
Исторически сложилось, что роль сельского хозяйства для России довольно велика, и в последние годы после некоторого спада наблюдается повышение интереса к этому сегменту российской экономики. В большинстве своем это связано со сменой земельной политики России: у земли появляется собственник, который заинтересован в оптимальном ее использовании. Обширные территории, занимаемые сельскохозяйственными угодьями, довольно сложно контролировать из-за недостатка точных карт, неразвитой сети пунктов оперативного мониторинга, наземных станций, в том числе и метеорологических, отсутствия авиационной поддержки, ввиду дороговизны содержания штата и т.д. Кроме того, в силу различного рода природных процессов, происходит постоянное изменение границ посевных площадей, характеристик почв и условий вегетации на различных полях и от участка к участку. Все эти факторы препятствуют получению объективной, оперативной информации, необходимой для констатации текущей ситуации, ее оценки и прогнозирования. А без этого практически невозможны увеличение производства сельскохозяйственной продукции, оптимизация использования земель, прогнозирование урожайности, уменьшение затрат и повышение рентабельности. За рубежом аналогичные проблемы успешно решаются благодаря применению данных аэро- и космической съемки, а также широкому использованию средств спутниковой навигации (GPS) при мониторинге посевов и при сборе урожая, для изучения состояния растительного покрова и прогноза продуктивности выращиваемых культур. В нашей стране использование данных спутникового зондирования в сельском хозяйстве представляет собой быстро развивающееся и перспективное направление. Материалы космической съемки могут помочь как для решения комплексных задач управления сельскохозяйственными территориями, так и в узкоспециализированных направлениях. Типичными задачами в этой области являются: инвентаризация сельскохозяйственных угодий, контроль состояния посевов, выделение участков эрозии, заболачивания, засоленности и опустынивания, определение состава почв, слежение за качеством и своевременностью проведения различных сельскохозяйственных мероприятий. При систематической повторяемости съемок — наблюдение за динамикой развития сельскохозяйственных культур и прогнозирование урожайности. Например, зная, как меняется спектральная яркость растительности в течение вегетационного периода, можно по тону изображения полей судить об их агротехническом состоянии. После перезимовки состояние озимых культур оценивается по различию в цвете здоровых и погибших растений, состояние озимых и яровых до уборки урожая — на основе учета степени покрытости почвы всходами и равномерности их распределения.
Как известно, отражение растительного покрова в красной и ближней инфракрасной областях электромагнитного спектра тесно связано с его зеленой фитомассой. Для того чтобы количественно оценить состояние растительности, широко применяется так называемый нормализованный разностный вегетационный индекс NDVI (Normalized Difference Vegetation Index).
NDVI (NormalizedDifferenceVegetationIndex) - нормализованный относительный индекс растительности - простой количественный показатель количества фотосинтетически активной биомассы (обычно называемый вегетационным индексом). Один из самых распространенных и используемых индексов для решения задач, использующих количественные оценки растительного покрова.
Вычисляется по следующей формуле:
где,
NIR - отражение в ближней инфракрасной области спектра
RED - отражение в красной области спектра
Согласно этой формуле, плотность растительности (NDVI) в определенной точке изображения равна разнице интенсивностей отраженного света в красном и инфракрасном диапазоне, деленной на сумму их интенсивностей.
Расчет NDVI базируется на двух наиболее стабильных (не зависящих от прочих факторов) участках спектральной кривой отражения сосудистых растений. В красной области спектра (0,6-0,7 мкм) лежит максимум поглощения солнечной радиации хлорофиллом высших сосудистых растений, а в инфракрасной области (0,7-1,0 мкм) находиться область максимального отражения клеточных структур листа. То есть высокая фотосинтетическая активность (связанная, как правило, с густой растительностью) ведет к меньшему отражению в красной области спектра и большему в инфракрасной. Отношение этих показателей друг к другу позволяет четко отделять и анализировать растительные от прочих природных объектов. Использование же не простого отношения, а нормализованной разности между минимумом и максимумом отражений увеличивает точность измерения, позволяет уменьшить влияние таких явлений как различия в освещенности снимка, облачности, дымки, поглощение радиации атмосферой и пр.
NDVI может быть рассчитан на основе любых снимков высокого, среднего или низкого разрешения, имеющим спектральные каналы в красном (0,55-0,75 мкм) и инфракрасном диапазоне (0,75-1,0 мкм). Алгоритм расчета NDVI встроен практически во все распространенные пакеты программного обеспечения, связанные с обработкой данных дистанционного зондирования (Arc View Image Analysis, ERDAS Imagine, ENVI, Ermapper, Scanex MODIS Processor, ScanView и др.).
Комбинации каналов камер спутников используемые для расчета NDVI:
MSS Landsat(4,5) | 5 (0.6-0.7 мкм), 6 (0.7-0.8 мкм) или 7 (0.8-1.1 мкм) |
TM Landsat(4,5) | 3 (0.63-0.69 мкм), 4 (0.76-0.90 мкм) |
ETM+ Landsat7 | 3 (0.63-0.69 мкм), 4 (0.75-0.90 мкм) |
AVHRR NOAA | 1 (0.58-0.68 мкм), 2 (0.72-1.0 мкм) |
MODIS Terra(Aqua) | 1 (0.62-0.67 мкм), 2 (0.841-0.876 мкм) |
ASTER Terra | 2 (0.63-0.69 мкм), 3 (0.76-0.86 мкм) |
LISS IRS(1C/1D) | 2 (0.62-0.68 мкм), 3 (0.77-0.86 мкм) |
Со времени разработки алгоритма для расчета NDVI (RouseBJ, 1973) у него появилось довольно много модификаций предназначенных для уменьшения влияния различных помехообразующих факторов. Таких, к примеру, как поглощение аэрозолями атмосферы (atmospheric - resistantvegetationindex - ARVI), отражение от почвенного слоя (soiladjustedvegetationindex - SAVI) и др. Для расчета этих индексов используются формулы, учитывающие отношения между отражающей способностью различных природных объектов и растительностью в других диапазонах, помимо красного и инфракрасного, что делает их более сложными в применении. Существуют также индексы, основанные на NDVI, но корректирующие сразу несколько помехообразующих факторов, как, например EVI (Enhancedvegetationindex).
Для отображения индекса NDVI используется стандартизованная непрерывная градиентная или дискретная шкала, показывающая значения в диапазоне от -1..1 в % или в так называемой масштабированной шкале в диапазоне от 0 до 255 (используется для отображения в некоторых пакетах обработки ДЗЗ, соответствует количеству градаций серого), или в диапазоне 0..200 (-100..100), что более удобно, так как каждая единица соответствует 1% изменения показателя. Благодаря особенности отражения в NIR -RED областях спектра, природные объекты, не связанные с растительностью, имеют фиксированное значение NDVI, (что позволяет использовать этот параметр для их идентификации):
Тип объекта | Отражение в красной области спектра | Отражение в инфракрасной области спектра | Значение NDVI |
Густая растительность | 0.1 | 0.5 | 0.7 |
Разряженная растительность | 0.1 | 0.3 | 0.5 |
Открытая почва | 0.25 | 0.3 | 0.025 |
Облака | 0.25 | 0.25 | 0 |
Снег и лед | 0.375 | 0.35 | -0.05 |
Вода | 0.02 | 0.01 | -0.25 |
Искусственные материалы (бетон, асфальт) | 0.3 | 0.1 | -0.5 |
Но, как правило, для задач связанных с картографированием растительности используют немасштабированную шкалу, начинающуюся с 0 (значения NDVI меньше 0 растительность принимать не может). Для перевода из шкалы -1..1 в 0..200 (масштабирование) используется следующая формула:
масштабированный NDVI = 100(NDVI + 1)
Существует устойчивая корреляция между показателем NDVI и продуктивностью для различных типов экосистем:
Это свойство довольно активно используется для регионального картирования и анализа различных типов ландшафтов, оценке ресурсов и площадей биосистем в масштабе стран и континентов. Однако чаще, расчет NDVI употребляется на основе серии разновременных (разносезонных) снимков с заданным временным разрешением, позволяя получать динамическую картину процессов изменения границ и характеристик различных типов растительности (месячные вариации, сезонные вариации, годовые вариации).