В промышленно развитых странах Западной Европы (Швеции, Дании, Германии), а также в США и Японии уже в начале 60-х годов стали формироваться автоматизированные банки медицинских данных. Их развитие было успешным благодаря существованию, например, в Скандинавских странах личного номера, однозначно идентифицирующего каждого человека [1]. На основе таких автоматизированных банков данных позднее начали формироваться территориальные регистры рака, функционирующие сейчас во многих регионах и крупных городах мира и России. Более сложной задачей оказалось формирование банков геоэкологических данных, взаимоувязанных с медицинскими регистрами. До настоящего времени этот процесс находится в стадии становления, причем не столько из-за технических сложностей, которые сейчас успешно решаются на базе вычислительных сетей, сколько из-за ведомственной разобщенности медицинских и природоохранных служб.
Развитие технических средств контроля окружающей среды в зарубежных странах привело к появлению автоматизированных систем слежения за качеством среды обитания, например загрязнением атмосферного воздуха в городах. Такие системы типа АНКОС успешно функционируют в США, Японии, странах Западной Европы и Южной Америки. Развитие этого направления за рубежом идет по пути применения все более совершенной техники, наращивания числа станций и автоматических датчиков для определения вредных примесей в атмосферном воздухе, объединения отдельных станций в системы, а локальных систем в региональные и общегосударственные сети [6].
В отечественной практике системы типа АНКОС начали проектироваться и внедряться с 80-х годов: сначала в Москве, а в 1985—1986 годах в Санкт-Петербурге. Несмотря на их менее высокий технический уровень по сравнению с зарубежными аналогами, разрабатываемые автоматизированные системы мониторинга окружающей среды в настоящее время внедряются в Москве, Казани, Кемерове и других городах. В перспективе значение дистанционных методов мониторинга среды обитания в сочетании с геоэкоинформационными системами сбора и обработки данных, видимо, будет возрастать. По существу в крупных городах уже действуют автоматизированные системы геоэкологического мониторинга, обеспечивающие создание компьютерных городских банков данных о состоянии загрязнения атмосферы и анализ текущей и прогнозируемой обстановки. Широкое распространение получили программные продукты серии "Эколог" (расчет концентрации вредных веществ, содержащихся в выбросах промышленных предприятий; автоматизированные методы прогнозирования последствий аварийного химического загрязнения среды и т.д.).
Все более заметную роль начинают играть автоматизированные рабочие места (АРМ) специалистов соответствующего профиля на базе современных ПЭВМ. Технология АРМ становится основой технической политики и в сфере разработки гео-экоинформационных систем, предназначенных для управления качеством окружающей среды и охраной здоровья населения.
Структурные блоки любой системы мониторинга, в том числе и в сфере геоэкологических исследований, формируются на основе комплекса ведущих, то есть маркерных, критериев, подлежащих учету и слежению, а также требующих корректировки в необходимом направлении. Причем в системе регионального мониторинга здоровья населения заболеваемость обычно рассматривают в качестве основного системообразующего блока, а все остальные параметры, в том числе и показатели деятельности сети здравоохранения, — как факторы, воздействующие на здоровье.
Обеспечение гигиенической безопасности населения требует первостепенного учета управляемых факторов риска. В условиях промышленного города к таким критериям, на наш взгляд, следует относить следующие.
где Сi— средняя за год концентрация i-го вещества; ПДКi— предельно допустимая концентрация i-го вещества; k — константа, принимающая значения 1,5; 1,3; 1; 0,85 соответственно для веществ 1-, 2-, 3-, 4-го классов опасности. Icрассчитывается для n = 5, то есть из пяти наибольших значений концентрации веществ, определяющих основной вклад в суммарное загрязнение воздуха.
Численность населения контролируемых районов города, ПДК учитываемых ингредиентов, кадастр предприятий — загрязнителей среды и т. д. Структура банка данных для обеспечения мониторинга здоровья населения города показана на рис. 1. Его формирование требует привлечения разнообразной информации медицинских, природоохранных, гигиенических, градостроительных служб, ландшафтно-функционального картографирования, экспертно-статистического оценивания.
Рис. 1. Структурные блоки медико-экологического мониторинга промышленного региона
Реальность и целесообразность создания описанных выше банков медико-экологических данных подтверждаются на примере некоторых городов, в том числе Воронежа. Опыт разработки данной проблемы на кафедре природопользования и мониторинга окружающей среды Воронежского университета совместно с городским Центром гос-санэпидемнадзора показал значительную эффективность предлагаемых подходов. С помощью методов корреляционно-регрессионного анализа на базе программных средств Excel 5.0 для Windows создан компьютерный банк данных о состоянии здоровья детей в условиях городской среды за трехлетний период (1993—1995). Выполненная оценка медико-экологической обстановки свидетельствует об экологической обусловленности некоторых заболеваний населения [7].
Фрагменты формируемых выходных документов, полученных в ходе автоматизированного медико-экологического мониторинга, показаны на рис. 2—4 (электронные картограммы города с ранжированием зон обслуживания детских поликлиник по уровням заболеваемости и параметрам техногенных нагрузок на среду обитания; математико-статистические и графоаналитические модели, иллюстрирующие возрастание риска заболеваний при ухудшении качества среды обитания).
Рис. 2. Картограмма среднегодовых уровней детской заболеваемости в Воронеже (1993-1995), оцениваемых числом случаев на тысячу детей: высокий (1701-2150), средний (1251-1700), низкий уровень (800-1250)
Рис. 3. Регрессионные модели и графические тренды зависимости детской заболеваемости от загрязнения атмосферного воздуха. По осям ординат отложено число случаев на 1000 детей
Рис. 4. Динамика степени загрязнения почвы селитебных зон Воронежа свинцом и цинком (в мг/кг) и распространенности анемии (число случаев на 1000 детей) по территориальным медицинским объединениям
Среди детских заболеваний в Воронеже преобладают болезни органов дыхания (65%), уровень которых имеет тенденцию к росту и превышает аналогичные среднероссийские показатели в 1,2 раза по городу в целом. Профилактики и повышенного контроля требуют, кроме того, новообразования, врожденные аномалии, пространственные различия уровней которых достоверно коррелируют с интенсивностью загрязнения окружающей среды.