АННОТАЦИЯ
В дипломной работе проанализированы возобновляемые источники энергии (ВИЭ), получены графики изменения электрической нагрузки путем экспертной оценки. Обоснован вариант энергоснабжения сельской усадьбы на основе ВИЭ, установлены наиболее экономичные соотношения между мощностями энергоустановок (ветроустановка - 3,0 кВт, солнечная установка - 0,8 кВт, аккумуляторная батарея - 3150 А×час.). Определены оптимальные параметры ориентации фиксированного солнечного коллектора для Зерноградского района ( азимутный угол равен 17,5 оС, угол наклона к горизонту равен 41,6 оС ), обоснованы параметры ветроэнергетической установки и выбраны электрические машины и аппаратура управления и защиты.
Разработаны мероприятия по безопасной эксплуатации и монтажу энергоустановок.
Выполнен расчет экономической эффективности предлагаемого варианта энергоснабжения сельской усадьбы и определены условия эффективного применения.
Библ. 47 наим. 5 рис.
СОДЕРЖАНИЕ
ВВЕДЕНИЕ ...................................................................................................... 6
1.АНАЛИЗ ВОЗОБНОВЛЯЕМЫХ ИСТОЧНИКОВ ЭНЕРГИИ ................... 8
1.1.Солнечное излучение ................................................................................. 8
1.2.Энергия ветра ............................................................................................. 14
2.ВЫБОР ВАРИАНТА ЭНЕРГОСНАБЖЕНИЯ ............................................ 19
2.1.Графики потребления электроэнергии ...................................................... 19
2.2.Выбор основного и вспомогательного источника энергии ...................... 24
2.3. Определение мощности энергетических установок........................................26
3.ОБОСНОВАНИЕ КОНСТРУКЦИИ ВЕТРОЭНЕРГЕТИЧЕСКОЙ
УСТАНОВКИ ...........................................................................................................31
3.1.Выбор типа ветроэнергетической установки ............................................ 31
3.2.Обоснование и расчет ветроколеса ........................................................... 32
4.КОНСТРУКЦИЯ СОЛНЕЧНОЙ ЭНЕРГОУСТАНОВКИ .......................... 37
5.РАЗРАБОТКА ЭЛЕКТРИЧЕСКОЙ СХЕМЫ ЭЛЕКТРОСНАБЖЕНИЯ .. 40
5.1.Выбор электрических машин .................................................................... 40
5.2.Разработка принципиальной схемы электроснабжения ........................... 45
5.3.Выбор аппаратуры управления и защиты ................................................ 45
6.ТЕХНИКА БЕЗОПАСНОСТИ ПРИ МОНТАЖЕ
И ЭКСПЛУАТАЦИИ ЭНЕРГОУСТАНОВОК НА ВИЭ ........................... 49
6.1.Опасности, связанные с монтажом и эксплуатацией
энергоустановок на ВИЭ............................................................................. 49
6.2.Монтаж энергоустановок ........................................................................... 49
6.3.Эксплуатация энергоустановок ................................................................. 52
7.ЭКОНОМИЧЕСКАЯ ОЦЕНКА РЕЗУЛЬТАТОВ РАБОТЫ ....................... 55
ЗАКЛЮЧЕНИЕ ................................................................................................ 61
ЛИТЕРАТУРА .................................................................................................. 63
ВВЕДЕНИЕ
Во все времена для обеспечения своей жизнедеятельности, удовлетворения различных потребностей человек создавал, совершенствовал и развивал различные виды производства. Изобретение топливных двигателей, а затем и электрических машин, явилось в свое время значительным событием в развитии энергетики. Оно определило и современное состояние электроэнергетики, в основе которой лежат тепловые электростанции, работающие на различном ископаемом топливе.
Но в последнее время, когда казалось, что перспективы традиционной энергетики на ископаемом топливе достаточно устойчивы, в нарастающем темпе стали проявляться ее негативные стороны - загрязнение окружающей среды в сочетании с быстрым уменьшением легкодоступных запасов угля, нефти, газа. Так, по данным ЮНЕСКО /18/, при сохранении существующих тенденций потребления мировых запасов ископаемого топлива хватит на 40 - 100 лет.
Естественно, что человечество попыталось среагировать на появляющиеся проблемы и было выдвинуто ряд решений по их преодолению. В частности, были найдены возможности использования термоядерных реакций, которые могут обеспечить человечество энергией на многие тысячелетия. Однако, экологические проблемы при этом не снимаются, а наоборот, еще более обостряются из-за необходимости хранения радиоактивных отходов и возможности аварий атомных электростанций. Таким образом, можно полагать, что освоение атомной энергии не устраняет проблем энергообеспечения.
В настоящее время во многих странах Мира (в том числе развитых и обладающих атомной энергией) все большее внимание уделяется возобновляемым источникам энергии (ВИЭ), при этом исследуются возможности использования энергии Солнца, ветра, рек, приливов биотоплива и др. ВИЭ находятся в природе в естественном состоянии, поэтому не создают экологических проблем, и в силу своей возобновляемости являются неисчерпаемыми. Однако, применение ВИЭ для энергоснабжения различных объектов в настоящее время тоже в некоторой степени является проблематичным.
Так, для некоторых ВИЭ характерно непостоянство мощности во времени. Причем график изменения мощности ВИЭ может не совпадать с графиком потребности в энергии (проблема несовпадения). Кроме того, в настоящее время капитальные затраты на сооружение энергоустановок на основе ВИЭ превышают капитальные затраты на энергоустановки на ископаемом топливе (проблема стоимости). Существуют и еще менее значительные проблемы, связанные в основном с конструкцией энергоустановок на ВИЭ.
Однако, все эти проблемы не являются принципиально неустранимыми, а порождены, на наш взгляд, недостаточной разработкой вопросов использования ВИЭ. Разнообразие ВИЭ, современные достижения науки и техники в области электротехники (включая аккумулирование и повышение к.п.д. электроприемников), а также непрерывный рост стоимости традиционной энергии на фоне снижения стоимости энергоустановок на ВИЭ /18,20,39/ дают основания надеяться на успешное преодоление основных проблем их использования.
Учитывая высокую рассредоточенность и близость ВИЭ к потребителям, а также необходимость аккумулирования энергии, особенно привлекательным становится энергообеспечение на их основе небольших объектов.
Исходя из изложенного, целью настоящей работы является разработка эффективной системы энергоснабжения на основе ВИЭ типичной фермерской усадьбы.
1. АНАЛИЗ ВОЗОБНОВЛЯЕМЫХ ИСТОЧНИКОВ ЭНЕРГИИ
1.1. Солнечное излучение
Одним из перспективных ВИЭ является солнечное излучение. Так, полная средняя мощность солнечного излучения на Землю составляет 1,2×1017 Вт, т.е. на одного человека приходится около 30 Мвт /18/.
Мощность солнечного излучения зависит от широты местности, времени года и суток. Кроме того, мощность солнечного излучения, практически достигающего поверхности Земли (т.е. за вычетом потерь в атмосфере), зависит также и от состояния атмосферы (наличия облаков, тумана, пыли и т. п.). Так как состояние атмосферы зависит от многих случайных факторов, то суточные и годовые графики поступления солнечной энергии имеют сложный характер. Графики их изменения при этом можно представить двумя величинами:
- детерминированной, функционально связанной с временем суток, года и широтой местности;
- случайной, зависящей от состояния атмосферы. Математическое выражение мощности при этом имеет вид:
, (1.1.1.)где: Sг - плотность мощности солнечного излучения, достигающего горизонтальной поверхности Земли Вт/м2;
Sг(t,T,f) - функция плотности солнечного излучения на горизонтальную поверхность от времени суток , времени года , широты местности ;
S(x) - потери мощности солнечного излучения в атмосфере, Вт;
F - горизонтальная проекция поверхности Земли, над которой измеряется солнечное излучение, м2
Sкг= Sг(t,T,f) называется в соответствии со своей сущностью космическим солнечным излучением / 18 /.
Введем понятие коэффициента прозрачности:
, (1.1.2.)С учетом (1.1.1.), получаем:
(1.1.3.)где:
- плотность потерь мощности солнечного излучения в атмосфере, Вт/м2Теоретически коэффициент прозрачности может изменятся от 1 (потери в атмосфере равны нулю) до 0 (солнечное излучение полностью теряется в атмосфере). Практически kпр находится в пределах 0-0,8 .Это обусловлено тем, что даже в совершенно ясную погоду происходит поглощение и отражение солнечного излучения молекулами воздуха.
Введение коэффициента прозрачности позволяет записать
(1.1.1) в следующем виде: , (1.1.4.)Функция космического солнечного излучения в силу своей строгой детерменированности хорошо изучена и затабулирована /37/. На рис. 1.1.1 приведен график функции Sг(T) - зависимость плотности мощности космического солнечного излучения от времени года для широты Ростовской области.
Здесь же показан график суточной энергии космического солнечного излучения, построенный по данным /18/.
Отметим, что мощность солнечного излучения, падающего на единичную площадку сориентированную каким-либо образом, зависит от ориентации этой площадки. Для ориентации единичной площадки введем следующие параметры (рис. 1.2):
h - угол высоты Солнца над горизонтом;
β - угол наклона площадки над горизонтом;
γ - азимутальный угол, т.е. угол отклонения проекции нормали к площадке от направления на солнечный полдень.
Согласно рис.1.1.2. наибольшая плотность мощности космического солнечного излучения будет при совпадении нормали к площадке и направления на Солнце. Так как положение Солнца относительно Земли непрерывно изменяется в течение года и суток, то для получения максимально возможной плотности мощности солнечного излучения углы b и g должны меняться соответствующим образом, т.е. необходимо непрерывное слежение за Солнцем.