где: Мг - момент на валу генератора от ветроколеса, Нм;
Мвт - момент на валу ветроколеса, Нм;
nГН,nВН - номинальные обороты генератора и ветроколеса соответственно, об/мин.
В силу того, что необходимо иметь максимальный момент на валу генератора, а не ветроколеса, то нельзя без расчетов утверждать, что ветроколесо с большим количеством лопастей, а значит и с большим крутящим моментом, будет более эффективно, так как при этом уменьшается отношение nГН/nВН.
Крутящие моменты ветроколес зависят от профиля лопасти, который выбирается исходя из назначения и мощности ветроустановки. Для В-установок малой и средней мощности, приводящих во вращение электрогенераторы, приемлем профиль "Эсперо", и имеются справочные данные об относительных моментах ветроколес с таким профилем лопастей /43/. Под относительным моментом подразумевается отношение момента ветроколеса с конкретным количеством лопастей к моменту условного ветроколеса с бесконечным количеством лопастей, при котором крутящий момент принят равным единице /43/. С учетом этого, функция оптимизации будет иметь вид:
(3.2.2.)где: Мг,Мв - относительные моменты, о.е.
Так как момент зависит от скорости вращения ветроколеса, которая в свою очередь зависит от скорости ветра, то вводится понятие "модуль ветроколеса" /18,43/, который равен:
(3.2.3.)где: Z - модуль ветроколеса,о.е.;
w - угловая скорость вращения ветроколеса, с-1;
R- радиус ветроколеса, м;
Vв - скорость ветра, м/с.
В таблице 3.2.2. приведены относительные моменты на валу генераторов от ветроколес, работающих в номинальных режимах.
Таблица 3.2.1.
Параметры | Значение параметров при м | |||
2 | 3 | 4 | 6 | |
Vв, м/с | 6,5 | 6,5 | 6,5 | 6,5 |
Мопт, о.е. | 0,09 | 0,12 | 0,14 | 0,19 |
Zном, о.е. | 5,0 | 4,0 | 3,5 | 2,5 |
nВН, об/мин | 310 | 250 | 220 | 155 |
Ммах, о.е. | 0,100 | 0,135 | 0,150 | 0,195 |
Zмах, о.е. | 4,40 | 3,30 | 3,00 | 2,30 |
nВ МАХ,об/мин | 275 | 200 | 185 | 140 |
, о.е. | 1,11 | 1,13 | 1,07 | 1,03 |
, о.е. | 1,14 | 1,21 | 1,16 | 1,09 |
Таблица 3.2.2.
Число лопастей | Момент на валу генератора(о.е.*10-2) при n0, об/мин | ||||||||
3000 | 1500 | 1000 | 750 | 600 | 500 | 375 | 300 | 250 | |
2 | 0,75 | 1,5 | 2,3 | 3,0 | 3,8 | 4,5 | 6,0 | 7,5 | 9,0 |
3 | 0,80 | 1,6 | 2,4 | 3,2 | 4,0 | 4,8 | 6,4 | 8,0 | 9,6 |
4 | 0,82 | 1,6 | 2,4 | 3,2 | 4,1 | 4,9 | 6,5 | 8,2 | 9,8 |
6 | 0,79 | 1,6 | 2,4 | 3,2 | 4,0 | 4,8 | 6,3 | 7,9 | 9,5 |
Как видно из таблицы 3.2.2., наиболее предпочтительными для всех генераторов являются ветроколеса с числом лопастей от 3 до 6. Но так как ветроколесо с тремя лопастями обладает (см. табл. 3.2.1.) наибольшей перегрузочной способностью (Ммах/Мопт) и наибольшим диапазоном рабочих скоростей (Zном/Zмах), то окончательно принимается ветроколесо с тремя лопастями. Так как номинальные обороты ветроколеса небольшие, то целесообразно применять генераторы с большим числом пар полюсов р > 3.
Диаметр ветроколеса связан с мощностью ветроэнергетической установки следующей формулой /18,43,45/:
, (3.2.4.)где: hв, hп - к.п.д. ветроколеса и передачи;
V/ - математическое ожидание скорости ветра в рабочем диапазоне, м/сек.
r - плотность воздуха кг/м3, r = 1,36 кг/м3 / 21 /.
Для трехлопастного ветроколеса hв = 0,45 /43/. К.П.Д. передачи принимаем ηп = 0,98 /21/. Расчет ведем для генератора с nг = 500 об/мин. Рабочий диапазон скоростей ветра 4...16 м/с /38/.
Для этого диапазона Vв = 6,5 м/с, iп = 1,5.
(м)Принимаем D = 4,0 м.
Внешний вид предлагаемой В-установки показан на листе 6.
4. КОНСТРУКЦИЯ СОЛНЕЧНОЙ ЭНЕРГОУСТАНОВКИ
Как отмечалось ранее (см.п. 1.1.) для маломощных солнечных энергоустановок наиболее эффективным является фиксированный солнечный коллектор. Так как фиксированный коллектор не является следящим устройством, то его ориентация играет особо важную роль в эффективности всей установки. Очевидно солнечный коллектор должен быть ориентирован таким образом, чтобы за все время его использования он получал наибольшую суммарную энергию солнца.
Плотность солнечного излучения, поступающего на солнечный коллектор, определяется по формуле /18,37/:
, (4.1.1.)где: Sк - суммарная за год плотность солнечного излучения на коллектор с параметрами ориентации g и b, Вт/м2;
Sпi - плотность солнечного излучения на перпендикулярную к нему площадку за i-тый промежуток времени, Вт/м2;
ai - средний угол солнца над горизонтом в i-тый период времени, град;
gсi - средний азимут солнца за i-тый период времени, град.
Учитывая, что метеорологические станции имеют наиболее полную информацию о плотности солнечного излучения на горизонтальную поверхность, выразим Sп через Sг /37/:
, (4.1.2.)Тогда (4.1.1.) будет иметь вид:
, (4.1.3.)Как видно из (4.1.3.) суммарная годовая плотность солнечного излучения на фиксированный коллектор зависит от двух параметров g и b.
Оптимальное значение угла g определяется из равенства /32/:
, (4.1.4.)Проведем вычисления:
, (4.1.5.)Воспользуемся тригонометрическим тождеством :
, (4.1.6.)Обозначив
, разделив (4.1.5.) на и с учетом (4.1.6.), получим: , (4.1.7.)Откуда определяем:
, (4.1.8.)Или проведя обратную подстановку
, окончательно получаем: , (4.1.9.)Как видно из (4.1.9.), оптимальный азимутный угол ориентации солнечного коллектора не зависит от угла его наклона к горизонту.
, (4.1.10.)Оптимальный угол b определяется при условии g = gопт из условия:
,(4.1.11.)Выполняем вычисления:
, (4.1.12.)В результате расчетов получены следующие параметры ориентации солнечного коллектора:
- азимутный угол должен состовлять -12,5 град., т.е. солнечный коллектор должен быть повернут на 12,5 град. на юго-восток;
- угол наклона к горизонтальной поверхности должен состовлять 41,6 град.
Такая ориентация солнечного коллектора объясняется тем, что в Ростовской области в среднем за год в первой половине дня более ясная погода чем во второй половине дня.
Учитывая, что Зерноград расположен западнее поселка Гигант на 4,5 градуса, принимаем азимутальный угол солнечного коллектораравный 17 градусов.
5. РАЗРАБОТКА ЭЛЕКТРИЧЕСКОЙ СХЕМЫ
ЭЛЕКТРОСНАБЖЕНИЯ
5.1. Выбор электрических машин
Машина постоянного тока работает в двух режимах: генераторном и двигательном.
В режиме генератора МПТ должна обеспечивать только зарядку АБ. Так как в В-установке предусмотрено поддержание скорости вращения при изменении силы ветра, а режим зарядки АБ не является жестким ( напряжение зарядки может быть в пределах 13...20 В, а ток зарядки в пределах 0,1...1,3 Iз.н./ 1 /, где Iз.н.- номинальный ток зарядки ), то для этих целей можно применить МПТ с любой системой возбуждения.
В режиме двигателя необходимо, чтобы обороты МПТ изменялись как можно меньше, при изменении нагрузки на валу, т.к. генератор переменного тока желательно вращать с постоянной скоростью. Для этих целей наиболее подходит МПТ параллельного возбуждения, у которой зависимость оборотов от момента сопротивления или тока якоря слабо выражена/2,26/.
Генератор переменного тока предназначен для снабжения электроэнергией электроприемников сельской усадьбы, среди которых есть потребители как с активной нагрузкой (электроосвещение с лампами накаливания, электрокамины, утюги, инкубаторы), так и с активно-индуктивной нагрузкой (пылесосы, стиральные машины, теле радиоаппаратура и т.п.). В качестве ГПТ применяется синхронный генератор, который обеспечивает выработку электроэнергии достаточно высокого качества при любом виде нагрузки / 27 /.