Формально состояние системы в момент времени Г0 < t* < Т полностью определяется начальным состоянием z(/0), входными воздействиями x(t), управляющими воздействиями u(i), внутренними параметрами h(t) и воздействиями внешней среды n(i), которые имели место за промежуток времени t* - tQ, с помощью глобальных уравнений динамической системы (1.4), (1.5), преобразованных к виду
Вход системы А
Вход системы "В
0. |
g, t];
y(t) = g(z(t), t).
Здесь уравнение состояния по начальному состоянию z(f0) и переменным х, и, п, hопределяет вектор-функцию z(i), а уравнение наблюдения по полученному значению состояний z(t) определяет переменные на выходе подсистемы y(t).
Таким образом, цепочка уравнений объекта «вход-состояния-выход» позволяет определить характеристики подсистемы:
ХО =/Ш'0)' х, и, п, h, 0]
и под математической моделью реальной системы можно понимать конечное подмножество переменных (x(t), u(t), n(i), h(t)} вместе с математическими связями между ними и характеристиками y(f).
Структура - совокупность образующих систему элементов и связей между ними. Это понятие вводится для описания подмодели Ч*6. В структуре системы существенную роль играют связи. Так, изменяя связи при сохранении элементов, можно получить другую систему, обладающую новыми свойствами или реализующую другой закон функционирования. Это наглядно видно на рис. 1 .6, если в качестве системы рассматривать соединение трех проводников, обладающих разными сопротивлениями.
Необходимость одновременного и взаимоувязанного рассмотрения состояний системы и среды требует определения понятий «ситуация» и «проблема».
Выход системы А a |
Выход системы В б
Рис. 1.6. Роль связей в структуре системы: а - параллельная связь; б - последовательная связь
Ситуация - совокупность состояний системы и среды в один и тот же момент времени.
Проблема - несоответствие между существующим и требуемым (целевым) состоянием системы при данном состоянии среды в рассматриваемый момент времени.
1.3. МОДЕЛИ СЛОЖНЫХ СИСТЕМ
Под моделированием понимается процесс исследования реальной системы, включающий построение модели, изучение ее свойств и перенос полученных сведений на моделируемую систему.
Общими функциями моделирования являются описание, объяснение и прогнозирование поведения реальной системы.
Типовыми целями моделирования могут быть поиск оптимальных или близких к оптимальным решений, оценка эффективности решений, определение свойств системы (чувствительности
42
Глава 1
Основы системного анализа
43
к изменению значений характеристик и др.), установление взаимосвязей между характеристиками системы, перенос информации во времени. Термин «модель» имеет весьма многочисленные трактовки. В наиболее общей формулировке мы будем придерживаться следующего определения модели. Модель - это объект, который имеет сходство в некоторых отношениях с прототипом и служит средством описания и/или объяснения, и/или прогнозирования поведения прототипа.
Формальное определение модели (1.1) определяет модель как изоморфизм А на Ч1.
Частные модели могут обозначаться как гомоморфизм:
Оператор / в этом обозначении указывает на способ, который позволяет построить требуемую модель.
Важнейшим качеством модели является то, что она дает упрощенный образ, отражающий не все свойства прототипа, а только те, которые существенны для исследования.
Сложные системы характеризуются выполняемыми процессами (функциями), структурой и поведением во времени. Для адекватного моделирования этих аспектов в автоматизированных информационных системах различают функциональные, информационные и поведенческие модели, пересекающиеся друг с другом.
Функциональная модель системы описывает совокупность выполняемых системой функций, характеризует морфологию системы (ее построение) - состав функциональных подсистем, их взаимосвязи.
Информационная модель отражает отношения между элементами системы в виде структур данных (состав и взаимосвязи).
Поведенческая (событийная) модель описывает информационные процессы (динамику функционирования), в ней фигурируют такие категории, как состояние системы, событие, переход из одного состояния в другое, условия перехода, последовательность событий.
Особенно велико значение моделирования в системах, где натурные эксперименты невозможны по целому ряду причин: сложность, большие материальные затраты, уникальность, дли-
тельность эксперимента. Так, нельзя «провести войну в мирное время», натурные испытания некоторых типов систем связаны с их разрушением, для экспериментальной проверки сложных систем управления требуется длительное время и т.д.
Можно выделить три основные области применения моделей: обучение, научные исследования, управление. При обучении с помощью моделей достигается высокая наглядность отображения различных объектов и облегчается передача знаний о них. Это в основном модели, позволяющие описать и объяснить систему. В научных исследованиях модели служат средством получения, фиксирования и упорядочения новой информации, обеспечивая развитие теории и практики. В управлении модели используются для обоснования решений. Такие модели должны обеспечить как описание, так и объяснение и предсказание поведения систем.
1.3.1.
КЛАССИФИКАЦИЯ ВИДОВ МОДЕЛИРОВАНИЯ СИСТЕМ
Классификация видов моделирования может быть проведена по разным основаниям. Один из вариантов классификации приведен на рис. 1.7.
В соответствии с классификационным признаком полноты моделирование делится на полное, неполное и приближенное. При полном моделировании модели идентичны объекту во времени и пространстве. Для неполного моделирования эта идентичность не сохраняется. В основе приближенного моделирования лежит подобие, при котором некоторые стороны реального объекта не моделируются совсем. Теория подобия утверждает, что абсолютное подобие возможно лишь при замене одного объекта другим точно таким же. Поэтому при моделировании абсолютное подобие не имеет места. Исследователи стремятся к тому, чтобы модель хорошо отображала только исследуемый аспект системы. Например, для оценки помехоустойчивости дискретных каналов передачи информации функциональная и информационная модели системы могут не разрабатываться. Для достижения цели моделирования вполне достаточна событийная
Общегосударственные органы управления |
Республиканские и отраслевые органы управления |
Предприятия и организации
Рис. 1.15
Смешанный характер носит и организационная структура современно
го предприятия (объединения, акционерного общества и т. п.)- Как будет
показано в гл. 5, линейный принцип управления реализуется в оргструкту
рах с помощью древовидных иерархических структур, линейно-фунж-
цлональные оргструктуры представляют собой иерархию со "слабыми*
связями, программно-целевые структуры основаны на приоритете горизон
тальных связей, матричные (тензорные) - на равноправии составляющих
многомерной организационной структуры. /
Оргструктуры, называемые матричными, являются фактически тоже смешанными, поскольку они сочетают матричные и иерархические представления.
Структуры с произвольными связями. Этот вид структур обыч-, но используется на начальном этапе познания объекта, новой про?, блемы, когда идет поиск способов установления взаимоотношений, между перечисляемыми компонентами, нет ясности в характере^ связей между элементами, и не могут быть определены не только последовательности их взаимодействия во времени (сетевые модели), но и распределение элементов по уровням иерархии.
При этом важно обратить внимание на достаточно распространенную ошибку при применении произвольных структур. В связи с/ 44
>еяс:кхггью взаимодействий между элементами вначале стремятся установить и представить графически все связи (рис. 1.16 а). Однако гагие представление не добавляет ничего нового к представлению элементов без связей (рис. 1.16 б), поскольку принятие решений
вязано всегда с установлением наиболее существенных связей для
.ринятия решения.
Представление типаа) I 1
п |
и« 1.16 а правомерно//\
ех случаях, когдаот 1 бы устанавливает-
] П |
Рис. 1.16 |
л :нла связей, их на-:фг. вленность. В приве-декном же виде это представление аналогично квадрату К.Малевича, который каждый может воспринимать по-своему.