Свойства задаются с использованием отношений одного из основных математических понятий, используемых при анализе и обработке информации. На языке отношений единым образом можно описать воздействия, свойства объектов и связи между ними, задаваемые различными признаками. Существует несколько форм представления отношений: функциональная (в виде функции, функционала, оператора), матричная, табличная, логическая, графовая, представление сечениями, алгоритмическая (в виде словесного правила соответствия).
з-
36
Глава 1
Основы системного анализа
37
Свойства классифицируют на внешние, проявляющиеся в форме выходных характеристик ytтолько при взаимодействии с внешними объектами, и внутренние, проявляющиеся в форме переменных состояния z, при взаимодействии с внутренними элементами рассматриваемой системы и являющиеся причиной внешних свойств.
Одна из основных целей системного анализа - выявление внутренних свойств системы, определяющих ее поведение.
По структуре свойства делят на простые и сложные (интегральные). Внешние простые свойства доступны непосредственному наблюдению, внутренние свойства конструируются в нашем сознании логически и не доступны наблюдению.
Следует помнить о том, что свойства проявляются только при взаимодействии с другими объектами или элементами одного объекта между собой.
По степени подробности отражения свойств выделяют горизонтальные (иерархические) уровни анализа системы. По характеру отражаемых свойств выделяют вертикальные уровни анализа - аспекты. Этот механизм лежит в основе утверждения о том, что для одной реальной системы можно построить множество абстрактных систем.
При проведении системного анализа на результаты влияет фактор времени. Для своевременного окончания работы необходимо правильно определить уровни и аспекты проводимого исследования. При этом производится выделение существенных для данного исследования свойств путем абстрагирования от несущественных по отношению к цели анализа подробностей.
Формально свойства могут быть представлены также и в виде закона функционирования элемента.
Законом функционирования Fs, описывающим процесс функционирования элемента системы во времени, называется зависимость y(t) = Fs( x, n, и, t).
Оператор Fsпреобразует независимые переменные в зависимые и отражает поведение элемента (системы) во времени - процесс изменения состояния элемента (системы), оцениваемый по степени достижения цели его функционирования. Понятие поведения принято относить только к целенаправленным системам и оценивать по показателям.
Цель - ситуация или область ситуаций, которая должна быть достигнута при функционировании системы за определенный промежуток времени. Цель может задаваться требованиями к показателям результативности, ресурсоемкости, оперативности функционирования системы либо к траектории достижения заданного результата. Как правило, цель для системы определяется старшей системой, а именно той, в которой рассматриваемая система является элементом.
Показатель - характеристика, отражающая качествоу'-й системы или целевую направленность процесса (операции), реализуемого у'-й системой:
YJ = WJ(n, x, и).
Показатели делятся на частные показатели качества (или эффективности) системы у>(, которые отражают /-е существенное свойство7-й системы, и обобщенный показатель качества (или эффективности) системы YJ — вектор, содержащий совокупность свойств системы в целом. Различие между показателями качества и эффективности состоит в том, что показатель эффективности характеризует процесс (алгоритм) и эффект от функционирования системы, а показатели качества - пригодность системы для использования ее по назначению.
Вид отношений между элементами, который проявляется как некоторый обмен (взаимодействие), называется связью. Как правило, в исследованиях выделяются внутренние и внешние связи. Внешние связи системы - это ее связи со средой. Они проявляются в виде характерных свойств системы. Определение внешних связей позволяет отделить систему от окружающего мира и является необходимым начальным этапом исследования.
В ряде случаев считается достаточным исследование всей системы ограничить установлением ее закона функционирования. При этом систему отождествляют с оператором F5и представляют в виде «черного ящика». Однако в задачах анализа обычно требуется выяснить, какими внутренними связями обусловливаются интересующие исследователя свойства системы. Поэтому основным содержанием системного анализа является определение структурных, функциональных, каузальных, информационных и пространственно-временных внутренних связей системы.
38
Глава 1
Основы системного анализа
39
Структурные связи обычно подразделяют на иерархические, сетевые, древовидные и задают в графовой или матричной форме.
Функциональные и пространственно-временные связи задают как функции, функционалы и операторы.
Каузальные (причинно-следственные) связи описывают на языке формальной логики.
Для описания информационных связей разрабатываются ин-фологические модели.
Выделение связей разных видов наряду с выделением элементов является существенным этапом системного анализа и позволяет судить о сложности рассматриваемой системы.
Важным для описания и исследования систем является понятие алгоритм функционирования As, под которым понимается метод получения выходных характеристик y(t) с учетом входных воздействий x(i), управляющих воздействий u(f) и воздействий внешней среды n(t).
По сути, алгоритм функционирования раскрывает механизм проявления внутренних свойств системы, определяющих ее поведение в соответствии с законом функционирования. Один и тот же закон функционирования элемента системы может быть реализован различными способами, т. е. с помощью множества различных алгоритмов функционирования As.
Наличие выбора алгоритмов Asприводит к тому, что системы с одним и тем же законом функционирования обладают разным качеством и эффективностью процесса функционирования.
Качество - совокупность существенных свойств объекта, обусловливающих его пригодность для использования по назначению. Оценка качества может производиться по одному интегральному свойству, выражаемому через обобщенный показатель качества системы.
Процессом называется совокупность состояний системы z(/0), z(/,), ... , z(tk), упорядоченных по изменению какого-либо параметра г, определяющего свойства системы.
Формально процесс функционирования как последовательная смена состояний интерпретируется как координаты точки в А>мерном фазовом пространстве. Причем каждой реализации процесса будет соответствовать некоторая фазовая траектория. Совокупность всех возможных значений состояний {z} называется пространством состояний системы.
Проиллюстрировать понятие процесса можно на следующем примере. Состояние узла связи будем характеризовать количеством исправных связей на коммутаторе. Сделаем ряд измерений, при которых количество связей будет иметь разные значения. Будет ли полученный набор значений характеризовать некоторый процесс? Без дополнительной информации это неизвестно. Если это упорядоченные по времени / (параметр процесса) значения, то - да. Если же значения перемешаны, то соответствующий набор состояний не будет процессом.
В общем случае время в модели системы Sможет рассматриваться на интервале моделирования (О, 7) как непрерывное, так и дискретное, т.е. квантованное на отрезки длиной Д/ временных единиц каждый, когда T = mAt, где т - число интервалов дискретизации.
Эффективность процесса - степень его приспособленности к достижению цели.
Принято различать эффективность процесса, реализуемого системой, и качество системы. Эффективность проявляется только при функционировании и зависит от свойств самой системы, способа ее применения и от воздействий внешней среды.
К? и т ерий эффективности - обобщенный показатель и правило выбора лучшей системы (лучшего решения). Например, Y* = max{YJ}.
Если решение выбирается по качественным характеристикам, то критерий называется решающим правилом.
Если нас интересует не только закон функционирования, но и алгоритм реализации этого закона, то элемент не может быть представлен в виде «черного ящика» и должен рассматриваться как подсистема (агрегат, домен) - часть системы, выделенная по функциональному или какому-либо другому признаку.
Описание подсистемы в целом совпадает с описанием элемента. Но для ее описания дополнительно вводится понятие множества внутренних (собственных) характеристик подсистемы А,е Н, 1=1, ..., kh.
Оператор Fsпреобразуется к виду y(t) = Fs ( х, п, и, h, t), aметод получения выходных характеристик кроме входных воздействий x(t), управляющих воздействий u(t) и воздействий внешней среды n(f) должен учитывать и собственные характеристики подсистемы h(t).
40
Глава 1
Основы системного анализа
41
Описание закона функционирования системы наряду с аналитическим, графическим, табличным и другими способами в ряде случаев может быть получено через состояние системы. Состояние системы - это множество значений характеристик системы в данный момент времени.