Смекни!
smekni.com

Отрывок из учебника по теории систем и системному анализу (стр. 13 из 16)

способность и стремлением к целеобразованию: в отличие от закрытых (техни­ческих) систем, которым цели задаются извне, в системах с активными элементами : •;•: формируются внутри системы (впервые эта особенность прнмсвдпсльно к к ^комическим системам была сформулирована Ю.И.Черняком [13D;

неоднозначность использования понятий (например, "цель" - "средство", "система" 'подсистема" и т. п.); эта особенность проявляется прн формировании структур 1rrrfi, при разработке проектов сложных автоматизированных комплексов, когда .иша, формирующие структуру системы, назвав какую-то ее часть подсистемой, ч^'-ез некоторое время начинают говорить о нек, как о системе, не добавляя гтри-с;влки "под", или подцели начинают называть средствами достижения вышестоящих целей, что часто вызывает затяжные дискуссии, легко разрешимые с помощью свойства "двуликого Януса", рассматриваемого в следующем параграфе.

Легко видеть, что часть из этих особенностей характерна для диффузных систем (стохастичность поведения, нестабильность от-Оельных параметров), но большинство из рассмотренных особенно-степ являются специфическими признаками, существенно отлича­ющими этот класс систем от других и затрудняющими их модели­рование.

Перечисленные особенности имеют разнообразные проявления, которые иногда можно выделять как самостоятельные особенности.

51


50


Основы системного анализа


51



ли, а для остальных подпроцессов строятся имитационные моде­ли. Такой подход дает возможность охватить качественно новые классы систем, которые не могут быть исследованы с использо­ванием аналитического или имитационного моделирования в отдельности.

Информационное (кибернетическое) моделирование связано с исследованием моделей, в которых отсутствует непосредствен­ное подобие физических процессов, происходящих в моделях, реальным процессам. В этом случае стремятся отобразить лишь некоторую функцию, рассматривают реальный объект как «чер­ный ящик», имеющий ряд входов и выходов, и моделируют неко­торые связи между выходами и входами. Таким образом, в осно­ве информационных (кибернетических) моделей лежит отраже­ние некоторых информационных процессов управления, что позволяет оценить поведение реального объекта. Для построе­ния модели в этом случае необходимо выделить исследуемую функцию реального объекта, попытаться формализовать эту фун­кцию в виде некоторых операторов связи между входом и выхо­дом и воспроизвести данную функцию на имитационной моде­ли, причем на совершенно другом математическом языке и, есте­ственно, иной физической реализации процесса. Так, например, экспертные системы являются моделями ЛПР.

Структурное моделирование системного анализа базирует­ся на некоторых специфических особенностях структур опреде­ленного вида, которые используются как средство исследования систем или служат для разработки на их основе специфических подходов к моделированию с применением других методов фор­мализованного представления систем (теоретико-множественных, лингвистических, кибернетических и т.п.). Развитием структур­ного моделирования является объектно-ориентированное моде­лирование.

Структурное моделирование системного анализа включает:

• методы сетевого моделирования;

• сочетание методов структуризации с лингвистическими;

• структурный подход в направлении формализации постро­
ения и исследования структур разного типа (иерархических, мат­
ричных, произвольных графов) на основе теоретико-множествен­
ных представлений и понятия номинальной шкалы теории изме­
рений.



При этом термин «структура модели» может применяться как к функциям, так и к элементам системы. Соответствующие струк­туры называются функциональными и морфологическими. Объектно-ориентированное моделирование объединяет структу­ры обоих типов в иерархию классов, включающих как элементы, так и функции.

В структурном моделировании за последнее десятилетие сфор­мировалась новая технология CASE. Аббревиатура CASE имеет двоякое толкование, соответствующее двум направлениям ис­пользования CASE-систем. Первое из них - Computer-AidedSoftwareEngineering - переводится как автоматизированное про­ектирование программного обеспечения. Соответствующие CASE-системы часто называют инструментальными средами быстрой разработки программного обеспечения (RAD - RapidApplicationDevelopment). Второе - Computer-AidedSystemEngineering - подчеркивает направленность на поддержку кон­цептуального моделирования сложных систем, преимуществен­но слабоструктурированных. Такие CASE-системычастоназы­ваютсистемами BPR (Business Process Reengineering). В целом CASE-технология представляет собой совокупность методологий анализа, проектирования, разработки и сопровождения сложных автоматизированных систем, поддерживаемую комплексом вза­имосвязанных средств автоматизации. CASE - это инструмента­рий для системных аналитиков, разработчиков и программистов, позволяющий автоматизировать процесс проектирования и раз­работки сложных систем, в том числе и программного обеспе­чения.

Ситуационное моделирование опирается на модельную тео­рию мышления, в рамках которой можно описать основные ме­ханизмы регулирования процессов принятия решений. В центре модельной теории мышления лежит представление о формиро­вании в структурах мозга информационной модели объекта и внешнего мира. Эта информация воспринимается человеком на базе уже имеющихся у него знаний и опыта. Целесообразное по­ведение человека строится путем формирования целевой ситуа­ции и мысленного преобразования исходной ситуации в целевую. Основой построения модели является описание объекта в виде совокупности элементов, связанных между собой определенны­ми отношениями, отображающими семантику предметной обла-

4*


Мм не приводили 1 одробиых поясняющих примеров, поскольку каждый сту­дент можсг легко обнаружить большинство из названных особенностей на при icpeспоею свешенного повеления или поведения своих друтсй, коллектива, в котором учшся.

*

В то же время при создании и организации управления пред­приятиями часто стремятся отобразить их, используя теорию авто­матического регулирования и управления, разрабатывавшуюся для закрытых, технических систем и существенно искажающую пони­мание систем с активными элементами, что способно нанести вред предприятию, сделать его неживым "механизмом", не способным адаптироваться к среде и разрабатывать варианты своего развития. Такая ситуация стала наблюдаться в нашей стране в 60-70-е годы, когда слишком жесткие директивы стали сдерживать развитие промышленности, и в поисках выхода руководство страны начало реформы управления, названные по имени их инициатора косыгин-скими (подробнее см. в гл. 4).

Для того, чтобы начать осознавать проявление рассмотренных особенностей в реальных производственных ситуациях, студентам рекомендуется ознакомиться с примерами задач управления в [1.14, 8 и др.].

Рассмотренные особенности противоречивы. Они в большинст­ве случаев являются и положительными и отрицательными, жела­тельными и нежелательными для создаваемой системы. Их не сразу можно понять и объяснить для того, чтобы выбрать и создать тре­буемую степень их проявления. Исследованием причин проявления подобных особенностей сложных объектов с активными элемента-; ми занимаются философы, психологи, специалисты по теории си­стем. Основные изученные к настоящему времени закономерности построения, функционирования и развития систем, объясняющие эти особенности, будут рассмотрены в следующем параграфе.1

Проявление противоречивых особенностей развивающихся си­стем и объясняющих их закономерностей в реальных объектах не­обходимо изучать, постоянно контролировать, отражать в моделях-и искать методы и средства, позволяющие регулировать степень их проявления.

При этом следует иметь в виду важное отличие развивающихся систем с активными элементами от закрытых: пытаясь понять прин­ципиальные особенности моделирования таких систем, уже первые исследователи отмечали, что начиная с некоторого уровня слож--ности, систему легче изготовить и ввести в действие, преобразовать-и изменить, чем отобразить формальной моделью.

По мере накопления опыта исследования и преобразования та-; ких систем это наблюдение подтверждалось и была осознана их

' После ознакомления с закономерностями студентам рекомендуется составить таблицу особенностей и закономерностей, их объясняющих.

52


основная особенность - принципиальная ограниченность формализо­ванного описания развивающихся, самоорганизующихся систем.

Эта особенность, т. е. необходимость сочетания формальных метол">в и методов качественного анализа и положена в ©снову <как < удет показано ниже) большинства моделей и методик систем­ного iнализа.

П{ и «'юрмированин таких моделей меняется привычное предста-илени- о моделях, характерное для математического моделирования и при он дной математики. Изменяется представление и о доказа-тельст ?е адекватности таких моделей.

Ос но шую конструктивную идею моделирования при отображе­нии оЬъетга классом самоорганизующихся систем можно сформу­лировать следующим образом: разрабатывается знаковая система, с помощью которой фиксируют известные на данный момент компо­ненты и связи, а затем, путем преобразования полученного отобра­жения с помощью установленных (принятых) правил (правил структуризации или декомпозиции; правил композиции, поиска мер близости на пространстве состояний), получают новые, неизвестные ранее компоненты, взаимоотношения, зависимости, которые могут либо послужить основой для принятия решений, либо подсказать последующие шаги на пути подготовки решения.