Смекни!
smekni.com

Отрывок из учебника по теории систем и системному анализу (стр. 12 из 16)

Представление объекта в виде хорошо организованной систе­мы применяется в тех случаях, когда может быть предложено де­терминированное описание и экспериментально показана право­мерность его применения, т. е. экспериментально доказана адекват­ность модели реальному объекту или процессу. Попытки применить

49


48


Глава 1


Основы системного анализа


49




Аналитическая форма - запись модели в виде результата ре­шения исходных уравнений модели. Обычно модели в аналити­ческой форме представляют собой явные выражения выходных параметров как функций входов и переменных состояния.

Для аналитического моделирования характерно то, что в ос­новном моделируется только функциональный аспект системы. При этом глобальные уравнения системы, описывающие закон (алгоритм) ее функционирования, записываются в виде некото­рых аналитических соотношений (алгебраических, интегродиф-ференциальных, конечноразностных и т.д.) или логических усло­вий. Аналитическая модель исследуется несколькими методами:

• аналитическим, когда стремятся получить в общем виде
явные зависимости, связывающие искомые характеристики с на­
чальными условиями, параметрами и переменными состояния
системы;

• численным, когда, не умея решать уравнения в общем виде,
стремятся получить числовые результаты при конкретных началь­
ных данных (напомним, что такие модели называются цифро­
выми);

• качественным, когда, не имея решения в явном виде, мож­
но найти некоторые свойства решения (например, оценить устой­
чивость решения).

В настоящее время распространены компьютерные методы исследования характеристик процесса функционирования слож­ных систем. Для реализации математической модели на ЭВМ не­обходимо построить соответствующий моделирующий алгоритм.

Алгоритмическая форма - запись соотношений модели и выб­ранного численного метода решения в форме алгоритма. Среди алгоритмических моделей важный класс составляют имитацион­ные модели, предназначенные для имитации физических или ин­формационных процессов при различных внешних воздействи­ях. Собственно имитацию названных процессов называют ими­тационным моделированием.

При имитационном моделировании воспроизводится алго­ритм функционирования системы во времени - поведение систе­мы, причем имитируются элементарные явления, составляющие процесс, с сохранением их логической структуры и последова­тельности протекания, что позволяет по исходным данным полу­чить сведения о состояниях процесса в определенные моменты



времени, дающие возможность оценить характеристики системы. Основным преимуществом имитационного моделирования по сравнению с аналитическим является возможность решения бо­лее сложных задач. Имитационные модели позволяют достаточ­но просто учитывать такие факторы, как наличие дискретных и непрерывных элементов, нелинейные характеристики элементов системы, многочисленные случайные воздействия и другие, ко­торые часто создают трудности при аналитических исследовани­ях. В настоящее время имитационное моделирование - наиболее эффективный метод исследования систем, а часто и единствен­ный практически доступный метод получения информации о по­ведении системы, особенно на этапе ее проектирования.

В имитационном моделировании различают метод статисти­ческих испытаний (Монте-Карло) и метод статистического мо­делирования.

Метод Монте-Карло - численный метод, который применя­ется для моделирования случайных величин и функций, вероят­ностные характеристики которых совпадают с решениями ана­литических задач. Состоит в многократном воспроизведении процессов, являющихся реализациями случайных величин и фун­кций, с последующей обработкой информации методами мате­матической статистики.

Если этот прием применяется для машинной имитации в це­лях исследования характеристик процессов функционирования систем, подверженных случайным воздействиям, то такой метод называется методом статистического моделирования.

Метод имитационного моделирования применяется для оцен­ки вариантов структуры системы, эффективности различных ал­горитмов управления системой, влияния изменения различных параметров системы. Имитационное моделирование Ъюжет быть положено в основу структурного, алгоритмического и парамет­рического синтеза систем, когда требуется создать систему с за­данными характеристиками при определенных ограничениях.

Комбинированное (аналитика-имитационное) моделирование позволяет объединить достоинства аналитического и имитаци­онного моделирования. При построении комбинированных мо­делей производится предварительная декомпозиция процесса функционирования объекта на составляющие подпроцессы, и для тех из них, где это возможно, используются аналитические моде-

4—20


класс хорошо организованных систем для подставления сложных многокомпонентных объектов или многокритериальных задач, ко­торые приходится решать при разработке технических комплексов, совершенствовании управления предприятиями и организациями и т. д., практически безрезультатны: это не только требует недопу­стимо больших затрат времени на формирование модели, но часто нереализуемо, так как не удается поставить эксперимент, доказы­вающий адекватность модели. Поэтому в большинстве случаев при представлении сложных объектов и проблем на начальных этапах исследования их отображают классами, характеризуемыми далее.

2. При представлении объекта в виде плохо организо­ванной или диффузной системы не ставится задача опре­делить все учитываемые компоненты и их связи с целями системы.

Система характеризуется некоторым набором макропараметров и закономерностями, которые выявляются на основе исследования не всего объекта или класса явлений, а путем изучения определен­ной с помощью некоторых правил достаточно представительной выборки компонентов, характеризующих исследуемый объект или процесс. На основе такого, выборочного, исследования получают характеристики или закономерности (статистические, зкономиче- , ские и т. п.), и распространяют эти закономерносги на поведение • системы в целом.

При этом делаются соответствующие оговорки. Например, прц^
получении статистических закономерностей их распространяют на;
поведение системы с какой-то вероятностью, которая оценивает-, *
ся с помощью специальных приемов, изучаемых математической *
статистикой.®?

•А,*

В качестве псимера применения диффузной системы обычно приводят отобра-^
жение газа. При использовании газа для прикладных целей его свойства не опрсде-*
ляют путем точного описания поведения каждой молекулы, а характеризуют газ
макропараметрами - давлением, относительной проницаемостью, постоянной
Больцмана и т. д. Основываясь на этих параметрах, разрабатывают приборы Я
устройства, использующие свойства газа, не исследуя прн этом поведения каждой
молекулы.S-

Отображение объектов б виде диффузных систем находит широт
кое применение при определении пропускной способности систем
разного рода, при определении численности штатов в обслужи"
вающих, например, ремонтных цехах предприятия и в обслужива­
ющих учреждениях (для решения подобных задач применяют ме^
тоды теории массового обслуживания), при исследовании документ,
тальных потоков информации и т. д.*'?

3. Отображение объектов в виде самоорганизующих^ с я систем позволяет исследовать наименее изученные объекты jt, процессы с большой неопределенностью на начальном этапе новки задачи.

50


Класс самоорганизующихся или развивающихся сие см характе--чпуегся рядом признаков, особенностей, приближающих их к ре-L.MibiM развивающимся объектам.

>7н особенности, как правило, обусловлены наличием в системе

пивных элементов и носят двойственный характер: они являются

.)лиымн свойствами, полезными для существования системы, при-

,т„>сабливаемости ее к изменяющимся условиям среды, но в то же

;;г)см«{ вызывают неопределенность, затрудняют управление систе-

»^Й.

Рассмотрим эти особенности несколько подробнее: нсстационарность (изменчивость, нестабильность) отдельных параметров и сто-

: , •>личность поведения:

уникальность и непредсказуемость поведения системы в конкретных условиях , шгодаря наличию активных элементов у системы как бы 1фоявляется "свобода •г >ли"), но в то же время наличие предельных возможностей, определяемых имею­щимися ресурсами (элементами, их свойствами) и характерными для определенного гнил систем офушурньши связями;

сносо6ностг> адаптироваться к изменяющимся условиям среды и помеха.» (причем

г, .к к внешним, так и к внутренним), что, казалось бы. является весьма полезным

„ . шством. однако адаптивность может проявляться не только но отношению к

• v.t-хам. по и по отношению к управляющим воздействиям, что весьма затрудняет

••равление системой;

: пособность противостоять энтропийны.** (разрушающим систему) тенденциям, с/ .словленная наличием активных элементов, стимулирующих обмен матернальны--.••% энергетическими и инфомационными продуктами со средой и проявляющих со-чпюнные "инициативы", благодаря чему в таких системах не выполняется законо-.vt-qmocTb возрастания энтропии (аналогична* второму закону термодинамики, дсй-сгиующему в закрытых системах, так. называемому "второму началу") и даже на-Г:.:юдаются нсгэнтропийные тенденции, т.е. собственно самоорганизация, развитие; способность вырабатывать варианты поведения и изменять свою структуру (при ьччюходимости), сохраняя при этом целостносгь и основные свойства;