Оценивая классификации с точки зрения их использования при выборе методов моделирования систем, следует отметить, что такие рекомендации (вплоть до выбора математических методов) имеются в них только для классов относительно низкой сложности (в классификации К.Боулдинга, например, - для уровня неживых систем),
47
46
Глава 1
Основы системного анализа
47
щих уровней, когда аналоговая модель отображает несколько (или только одну) сторон функционирования объекта. Макетирование применяется, когда протекающие в реальном объекте процессы не поддаются физическому моделированию или могут предшествовать проведению других видов моделирования. В основе построения мысленных макетов также лежат аналогии, обычно базирующиеся на причинно-следственных связях между явлениями и процессами в объекте.
Символическое моделирование представляет собой искусственный процесс создания логического объекта, который замещает реальный и выражает его основные свойства с помощью определенной системы знаков и символов. В основе языкового моделирования лежит некоторый тезаурус, который образуется из набора понятий исследуемой предметной области, причем этот набор должен быть фиксированным. Под тезаурусом понимается словарь, отражающий связи между словами или иными элементами данного языка, предназначенный для поиска слов по их смыслу.
Традиционный тезаурус состоит из двух частей: списка слов и устойчивых словосочетаний, сгруппированных по смысловым (тематическим) рубрикам; алфавитного словаря ключевых слов, задающих классы условной эквивалентности, указателя отношений между ключевыми словами, где для каждого слова указаны соответствующие рубрики. Такое построение позволяет определить семантические (смысловые) отношения иерархического (род/вид) и неиерархического (синонимия, антонимия, ассоциации) типа.
Формально тезаурусом называют конечное непустое множество Vслов v, отвечающее следующим условиям:
1) имеется непустое подмножество У0с V, называемое мно
жеством дескрипторов;
2) имеется симметричное, транзитивное, рефлексивное отно
шение Rс FxV, такое, что:
б) V] е V \ vq=> (3vе V0)(vRVl) •
при этом отношение Rназывается синонимическим, а слова v,, v2, отвечающие этому отношению, называются синонимическими дескрипторами;
3) имеется транзитивное и несимметричное отношение К с: vqx.vq, называемое обобщающим отношением.
В случае если два дескриптора v( и v2 удовлетворяют отношению v, К v2, то полагают, что дескриптор v, более общий, чем дескриптор v2.
Элементы множества У\У0называются множеством аскрип-торов.
Между тезаурусом и обычным словарем имеются принципиальные различия. Тезаурус - словарь, который очищен от неоднозначности, т.е. в нем каждому слову может соответствовать лишь единственное понятие, хотя в обычном словаре одному слову может соответствовать несколько понятий.
Если ввести условное обозначение отдельных понятий, т.е. знаки, а также определенные операции между этими знаками, то можно реализовать знаковое моделирование и с помощью знаков отображать набор понятий - составлять отдельные цепочки из слов и предложений. Используя операции объединения, пересечения и дополнения теории множеств, можно в отдельных символах дать описание какого-то реального объекта.
Математическое моделирование - это процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью. В принципе, для исследования характеристик любой системы математическими методами, включая и машинные, должна быть обязательно проведена формализация этого процесса, т.е. построена математическая модель. Вид математической модели зависит как от природы реального объекта, так и от задач исследования объекта, от требуемой достоверности и точности решения задачи. Любая математическая модель, как и всякая другая, описывает реальный объект с некоторой степенью приближения.
Для представления математических моделей могут использоваться различные формы записи. Основными являются инвариантная, аналитическая, алгоритмическая и схемная (графическая).
Инвариантная форма - запись соотношений модели с помощью традиционного математического языка безотносительно к методу решения уравнений модели. В этом случае модель может быть представлена как совокупность входов, выходов, переменных состояния и глобальных уравнений системы в виде (1.3).
а для более сложных систем оговаривается, что дать такие рекомендации трудно.
Поэтому ниже подробнее рассматривается классификация, в которой делается попытка связать выбор методов моделирования со всеми классами систем Основанием для этой классификации является степень организованности
Таблица 1.1
Тик системы | УроисНЬ СЛОЖ)'«>СТН | Примеры | • |
L.™ ------------------ ---- ----------- . ----------------------- —1 | Статические структуры (остовы) | Кристаллы | |
Неживые си- | Простые динамические структуры с задан- | Часовой мсха- | |
стемы | ным законом поведения | шгзм | |
Кибернетические системы с уираачяемымн | Термостат | ||
: | циклами обратной связи | ||
1 ---- | Открытые системы с самосохранясмой | Клетки, | |
структурой (первая ступень, на которой | гомеостат | ||
возможно разделение на живое и неживое) | |||
Живые организмы с низкой способностью | Растения | ||
воспринимать информацию | |||
Живые организмы с белое развитой способ- | Животные | ||
Живые | ностью воспринимать информацию, но не | ||
системы | обладающие самосознанием | , | |
Системы, характеризующиеся самосознани- | Люди | V | |
ем, мышлением и нетривиальным поведением | t | ||
Социальные системы | Социальные | 1 | |
организации | & | ||
Трансцендентные системы или системы, ле- | »ь -•С | ||
жащие в настоящий момент вне нашего по- | , if | ||
знания | 4f Jrt | ||
1 | ^ .1 | Jf" |
систем по степени организованности к ее роль в выборе методов моделирования систем. Впервые разделение систем по степени организованности по аналогии с классификацией Г.Саймона и А.Ньюэлла (хорошо структризованные, плохо структуризо-ванные и неструктуризованные проблемы [1.37]) было предложено В.В.Налимовым, который выделил класс хорошо организованных я класс плохо организованных или диффузных систем [1.34].
Позднее к этим двум классам был добавлен еще класс самоорганизующихся систем [1.49], который включает рассматриваемые иногда в литературе раздельно классы саморегулирующихся, самообучающихся, самонастраивающихся и т.п. систем.
Выделенные классы практически можно рассматривать как подходы к отображению объекта или решаемой задачи, которые могут выбираться в зависимости от стадии познания объекта и возможности получения информации о нем. 48
Кратко охарактеризуем эти классы.
I. Представление объекта или процесса принятия решения в виде хорошо организованной системы возможно в тех случаях, когда исследователю удается определить все элементы системы и их взаимосвязи между собой и с целями системы в биде детерминированных (аналитических, графических) зависимостей.
На представлении этим классом систем основаны большинство моделей физических процессов и технических систем. Однако для сложных объектов формирование таких моделей существенно зависит от лица, принимающего решения.
Например, работу сложного механизма приходится отображать в виде упрощен-• •,>й схемы или системы уравнений, учитывающих не все, но наиболее сущсствсшшс очки зрения автора модели и назначения механизма (цели его создания), элементы : связи между ними. Атом может быть представлен в виде планетарной модели, ;о^ггоящей из ядра и электронов, что упрощает реальную картину, но достаточно для понимания принципов взаимодействия элементов этой системы.
Строго говоря, простейшие математические соотношения, отображающие реальные ситуации, также не являются абсолютно детерминированными, поскольку при суммировании яблок не учитывается, что они не бывают абсолютно одинаковыми, а члограммы можно измерить только с некоторой точностью.
Иными словами, для отображения сложного объекта в виде хорошо организо-;--..;нной системы приходится выделять существенные и не учитывать относительно >. ^-существенные для конкретной цели рассмотрения компоненты, а при необходп-v.-jcthболее детального описания нужно уточнить цель, указав с какой степенью глубины нас интересует исследуемый объект, и построить новую (отображающую его) систему с учетом уточненной цели.
Например, при описании атома можно учесть протоны, нейтроны, мезоны и д; гуте микрочастицы, не рассматриваемые в планетарной модели системы. При исследовании сложного радиоэлектронного устройства после предварительного его отображения с помощью обобщенной блок-схемы разрабатывают принципиальную схему, проводят соответствующие расчеты для определения номиналов элементов, входящих в нес и реализующих необходимый режим ее функционирования, и т. д.
При представлении объекта в виде хорошо организованной системы задачи выбора целей и определения средств их достижения (элементов, связен) не разделяются. Проблемная ситуация может быть описана в виде выражении, связывающих цель со средства (т. е. в виде критерия функционирования, критерия или показателя эффективности, целевой функции и т. п.), которые могут быть представлены сложным уравнением, формулой, системой уравнений или сложных математических моделей, включающих и уравнения, к неравенства, и т. п. При этом иногда говорят, что цель представляется в виде критерия функционирования или эффективности, в то время как в подобных выражениях объединены и цель, и-средства.