Следует отметить, что приведенные на рис. 1.16 представления фактически являются различными подходами к исследованию проблемы: можно не имея вначале ни одной связи, искать и оценивать их последовательно, используя, например, один ;п методов морфологического моделирования - метод систематического покрытия г?оля (см. гл. 2), или другие методы анализа пространства состояний путем введения тех или иных мер близости; а можно действовать по принципу Родена, сформулированному в стихотворной форме Николаем Дориэо: "Взяли камень, убрали из камня все лишнее, и остались прелестные эти черты." '
Формируются структуры с произвольными связями путем установления возможных отношений между предварительно выделенными элементами системы, введения ориентировочных оценок силы связей, и, как правило, после предварительного формирования и анализа таких структур связи упорядочивают и получают иерархические или сетевые структуры.
1.4. Ююссяфякацяк скстем
Примеры классификаций систем. Системы разделяют на классы по различным признакам, и в зависимости от решаемой задачи можно выбирать разные принципы классификации.
Предпринимались попытки классифицировать системы по виду отображаемого объекта (технические, биологические, экономические и т. п. системы); по виду научного направления, используемого для их моделирования (математические, физические, химические и др.). Системы делят на детерминированные и стохастические; открытые и закрытые; абстрактные и материальные (существующие в объективной реальности) и т. д.
Н.Доризо. У статуи Венеры. — В сб.: Избранное. — М.: Гос. худ. лит., 1965. — С. 9.
45
Моделирование систем
J_
ПолноеНеполноеПриближенное
ДетерминированноеСтохастическое
СтатическоеДинамическое
IДискретноеДискретно-непрерывноеНепрерывное
I ,
I
Наглядное: • гипотетическое; • аналоговое; • макетирование | Символическое: • языковое; • знаковое | Математическое: • аналитическое; • имитационное; • комбинированное; • информационное; • структурное; • ситуационное | Натурное: • научный эксперимент; • комплексные испытания; • производственный эксперимент | Физическое: • в реальном времени; • в модельном времени |
Рис. 1.7. Классификация видов моделирования
ш
ш ш
на применении аналогий различных уровней. Для достаточно простых объектов наивысшим уровнем является полная аналогия. С усложнением системы используются аналогии последую- | |те, которая отражает уровень знаний исследователя об объекте и базируется на причинно-следственных связях между входом и выходом изучаемого объекта. Этот вид моделирования используется, когда знаний об объекте недостаточно для построения формальных моделей. Аналоговое моделирование основывается | | потеза о закономерностях протекания процесса в реальном объек- | | В основу гипотетического моделирования закладывается ги- | 1века о реальных объектах создаются наглядные модели, отображающие явления и процессы, протекающие в объекте. Примером таких моделей являются учебные плакаты, рисунки, схемы, диаграммы. | | При наглядном моделировании на базе представлений чело- | В зависимости от типа носителя и сигнатуры модели различаются следующие виды моделирования: детерминированное и стохастическое, статическое и динамическое, дискретное, непрерывное и дискретно-непрерывное. Детерминированное моделирование отображает процессы, в которых предполагается отсутствие случайных воздействий. Стохастическое моделирование учитывает вероятностные процессы и события. Статическое моделирование служит для описания состояния объекта в фиксированный момент времени, а динамическое - для исследования объекта во времени. При этом оперируют аналоговыми (непрерывными), дискретными и смешанными моделями. В зависимости от формы реализации носителя и сигнатуры моделирование классифицируется на мысленное и реальное. Мысленное моделирование применяется тогда, когда модели не реализуемы в заданном интервале времени либо отсутствуют условия для их физического создания (например, ситуация микромира). Мысленное моделирование реальных систем реализуется в виде наглядного, символического и математического. Для представления функциональных, информационных и событийных моделей этого вида моделирования разработано значительное количество средств и методов. | 1 модель, описываемая матрицей условных вероятностей \pf\ переходов г-го символа алфавита в 7-й. ч | Оо\Zо о3оз0)1ы0>£>. СЛ |
Классификации всегда относительны. Так, в детерминированной системе можно найти а ементы стохастичности. и. напротив, детерминированную систему можно считать часп.ым случаем стохастической (при вероятности равной единице^. Аналогично, если принять во внимание диалектику субъективно о и объективного в системе, то станет понятной относительность >азделения системы на абстрактные и объективно существующие: то могут быть стадии развития одной и той же системы.
Действительно, естсствсшше и искусственные объект J, < гражаясь в сознании человека, выступают в {юли абстракций, понятий, я абстр ten ые проекты создаваемых систем воплощаются в реально существующие объск ы, чоторие можно ощу-Tim,, а при изучении снова отразтъ в виде абстрактной сис"^ем j.
Однако относительность классификаций не должна останавливать исследователей. Цель любой классификации - ограничить выбор подходов к отображению системы, сопоставить выделенным классам приемы и методы системного анализа и дать рекомендации по выбору методов для соответствующего класса систем. При этом система, в принципе, может быть одновременно охарактеризована несколькими признаками, т. е. ей может быть найдено место одновременно в разных классификациях, каждая из которых может оказаться полезной при выборе методов моделирования.
Рассмотрим для примера некоторые из наиболее важных классификаций систем.
Открытые и закрытые системы. Понятие открытой системы ввел Л. фон Берталанфи [1.6]. Основные отличительные черты открытых систем - способность обмениваться со средой массой, энергией и информацией. В отличие от них закрытые или замкнутые системы предполагаются (разумеется, с точностью до принятой чувствительности модели) полностью лишенными этой способности, т. е. изолированными от среды.
Возможны частные случаи: например, не учитываются гравитационные и энергетические процессы, а отражается в модели системы только обмен информацией со средой; тогда говорят об информационно-проницаемых или соответственно об информационно-непроницаемых системах.
С моделью открытой системы Берталанфи можно познакомиться в [1.6, 1.7, 1.62]. Там же рассматриваются некоторые интересные особенности открытых систем. Одна из наиболее важных состоит в следующем. В открытых системах "проявляются термодинамические закономерности, которые кажутся парадоксальными и противоречат второму началу термодинамики" ([1.7], с. 42). Напомним, что второй закон термодинамики ("второе начало"), сформулированный для закрытых систем, характеризует систему' ростом энтротга, стремлением к неупорядоченности, разрушению.
Проявляется этот закон и в открытых системах (например, старение биологических систем). Однако в отличие от закрытых в от-
46
системах возможен "а вод эттюпии", ее снижение; "по-системы могут сохранять свой высокий уровень и даже раз-<;шаться в сторону увеличения порядка сложности" ([1.7], с. 42), т. е. них проявляется рассматриваемая в следующем разделе законо-мсрность самооргшшзации (хотя Берталанфи этот термин еще не использовал). Именно поэтому важно для системы управления поддерживать хороший обмен информацией со средой.
Целенаправленные, целеустремленные с и с-
г е м ы. Как уже отмечалось, не всегда при изучении систем можно
применять понятие цель. Однако при изучении экономических, ор-
анизационных объектов важно выделять класс целенаправленных
;ши целеустремленных систем [13, 4.1].
В этом классе, в свою очередь, можно выделить системы, в которых цели задаются извне (обычно это имеет место в закрытых системах), и системы, в которых цели формируются внутри системы (что характерно для открытых, самоорганизующихся систем).
Закономерности целеобразоваяия в самоорганизующихся системах рассматриваются ниже. Методики, помогающие формировать и анализировать структуры целей, характеризуются в гл. 4.
Классяфккацшв актам» га» слсжностн. Существует несколько подходов к разделению систем по сложности. Так, Г-Н.Поваров связывает сложность с размерами системы [1.34].
В то же время существует точка зрения, что большие (по величине, количеству элементов) и сложные (по сложности связей, алгоритмов поведения) системы — это разные классы систем [13].
Б.С.Флейшман за основу классификации принимает сложность поведения системы [1.52].
Одна из наиболее полных и интересных классификаций по уровням сложности предложена К.Боулдишом [1ЛО, 1.63]. Выделенные в ней уровни приведены в табл. 1.1.
В классификации К.Бсулдинга каждый последующий класс включает в себя предыдущий, характеризуется большим проявлением свойств открытости и стохастичности поведения, более ярко выраженными проявлениями закономерностей иерархичности и историчности (рассматриваемых ниже), хотя это не всегда отмечается, а также более сложными "механизмами" функционирования и развития.