Период эксплуатации на истощение характеризуется быстрым снижением пластового давления и дебитов нефти, ростом ГФ. Максимальный месячный отбор (6,75 тыс. м3) наблюдался в марте 1959 г., а к 1963 г. добыча нефти снизилась до 0,95 тыс. м3/мес. С началом заводнения отмечена стабилизация, а в дальнейшем — повышение пластового давления с 9,8 до 13,7 МПа. По мере расширения масштабов воздействия на залежь росли отборы нефти, которые к середине 1966 г. достигли 12,6 тыс. м3/мес. Средний газовый фактор упал с 2300 до 180 м3/м3. На 01.01.1969 г. из залежи было добыто 650 тыс. м3 нефти, из них 450 тыс. м3 получено за счет полимерного заводнения.
При оценке эффективности полимерного заводнения продуктивную площадь разбили на семь участков, выделенных с учетом истории их разработки. Для каждой эксплуатационной скважины рассчитали предельный отбор нефти путем экстраполяции графиков дебитов, которые в настоящее время повсюду имеют тенденцию к постепенному снижению. Суммированием оценили предельную нефтеотдачу по участкам и сопоставили последнюю с расходом полимера. При этом было установлено, что закачка пушера в количестве меньше 18,5 кг/(га-м) практически не повышает эффективность вытеснения нефти. Для участка № 5, расположенного в центральной части оторочки, где расход полимера составил около 9 кг/(га-м), удельная нефтеотдача оценивается в 90 м3/(га-м), что близко по эффективности к простому заводнению — 83 м3/(га-м).
Максимальный эффект — 211 м3/(га-м) — ожидается на участке № 2, где расход полимера составил 38,5 кг/(га-м). На соседнем с ним участке № 3 было закачано еще больше полимера — 42,5 кг/(га-м), но из-за того, что этой операции предшествовало простое заводнение, нефтеотдача здесь будет ниже —128 м3/(га-м).
В среднем по залежи рассчитывают получить по 127 м3/(га-м) нефти, что в 2,5 раза превышает прогнозную нефтеотдачу, достигаемую при разработке оторочки на естественном пластовом режиме. Прирост нефтеотдачи за счет загущения воды полимером составит 36 мэ/(га-м). В расчете на 1 м3 добытой нефти затраты на полимер оцениваются в 2,07 долл. Несмотря на приближенность расчета экономических показателей, полимерное заводнение на данном месторождении оказалось выгодным.
Опыт разработки залежи Крейн показывает, насколько эффективным может быть оперативное изменение системы воздействия на нефтегазо-конденсатные пласты. Здесь была применена уникальная технология добычи нефти, но особенно важно то, что к ней пришли в результате систематических наблюдений за состоянием оторочки при различных способах воздействия на пласт. Загущение воды полимером с целью создания устойчивого барьера между нефтяной и газовой зонами само по себе является крупным достижением в области совершенствования барьерного заводнения. Это мероприятие, к тому же, позволило установить, что в местных условиях закачка полимера значительно улучшает коэффициент охвата. Распространение полимерного заводнения на всю нефтенасыщенную зону весьма благоприятно сказалось на нефтеотдаче. В то же время следует отметить, что не удалось остановить движение оторочки регулированием де-битов путем форсированного отбора нефти.
Ю.В. Желтое, В.М. Рыжик, В.Н. Мартос предложили также способ разработки нефтегазоконденсатного месторождения путем частичного поддержания пластового давления в газовой шапке за счет барьерного заводнения и регулируемых отборов нефти и газа. Согласно этому способу "сухого поля" в течение определенного периода времени в зону ГНК нагнетается вода [10]. Одновременно осуществляется разработка нефтяной оторочки и газовой шапки. При этом темпы отбора нефти из оторочки и газа с конденсатом из газовой шапки устанавливаются такими, чтобы к концу выработки основных запасов нефти часть газоконденсатной зоны осталась необводненной. После прекращения закачки воды нефтяную оторочку продолжают разрабатывать на истощение до заданного предела обводнен-ности продукции. В это же время идет интенсивный отбор газа из зоны "сухого поля". Поскольку даже частичного поддержания давления после прекращения нагнетания воды не ведется, в результате отбора нефти и газа пластовое давление достаточно быстро снижается, а газонасыщенный объем обводненной зоны увеличивается и соответственно происходит внедрение воды из этой зоны в "сухое поле". После достижения порога гидродинамической подвижности защемленный газ обводненной зоны начинает фильтроваться не только в составе внедряющейся воды, но и как сплошная свободная фаза, обеспечивая увеличение дебитов газа эксплуатационных скважин. Авторы способа признают, что рассчитанные темпы добычи газа с конденсатом могут оказаться слишком низкими. В этом случае рекомендуется устанавливать отборы нефти и газа в соответствии с существующими потребностями, но после обводнения заранее установленной части газоконденсатной шапки "сухое поле" следует законсервировать. Размеры "сухого поля" можно выбрать с таким расчетом, чтобы к моменту предельного снижения давления полного обводнения этого поля не произошло и имелась бы возможность в период доразработки залежи отбирать газ без воды. Экспериментальные исследования авторов способа показали, что в этом случае размеры "сухого поля" должны быть значительными.
Период доразработки будет сопровождаться снижением давления, в частности, в зоне "сухого поля". Соответственно будет уменьшаться конденсатосодержание добываемого газа. Отсюда следует, что для оптимизации не только доразработки, но и разработки в целом объекта необходимо сравнить ожидаемые показатели для нескольких вариантов, различающихся объемами нагнетания воды и размерами "сухого поля" к моменту прекращения поддержания давления. Очевидно, эти расчеты должны носить конкретный характер с учетом характеристики объекта разработки.
Эксперименты показали, что доля воды в продукции оказывается допустимой после снижения насыщенности пласта на 10—15 %.Таким образом, если после обводнения "сухого поля" средняя водонасыщенность пласта снизится на подобную величину, обводнившиеся ранее скважины могут быть пущены в работу и будут фонтанировать газом с водой. По мере отбора из пласта воды и снижения его водонасыщенности обводненность продукции будет непрерывно снижаться.
В некоторых случаях на нефтегазоконденсатных месторождениях может оказаться целесообразным применение законтурного заводнения. При рассмотрении этого способа обычно возникают опасения потерь нефти из-за вторжения ее в газонасыщенную зону, и для предотвращения этого принимают специальные меры. Законтурное заводнение служит прежде всего целям повышения нефтеотдачи и в случае мощных нефтяных оторочек может дать значительный технико-экономический эффект.
Как известно, в газоконденсатных шапках нефтегазоконденсатных залежей может присутствовать так называемая остаточная (погребенная) нефть, причем насыщенность ею перового пространства и ее запасы могут быть значительными [15, 28, 58]. Это обстоятельство заставляет изменить устоявшуюся точку зрения на недопустимость вторжения нефтяной оторочки в газоконденсатную зону. Результаты проведенного Ю.В. Желтовым и В.Н. Мартосом экспериментального исследования закономерностей движения оторочек позволили предложить способ разработки нефтегазоконденсатных залежей с преднамеренным принудительным смещением нефтяных оторочек в купол залежи. Смысл предложенного способа состоит в том, что при достаточно высокой насыщенности пласта погребенной нефтью (примерно 25 % и больше от объема пор) будет происходить накопление нефти в оторочке. За счет добычи погребенной нефти общая нефтеот-дача может превысить начальные запасы оторочки. При менее высоких насыщенностях размеры оторочки по мере ее движения сокращаются, однако и в этом случае может быть получена сравнительно высокая нефтеот-дача. Единственным непременным условием применения этого способа является поддержание в залежи начального давления.
Размещение эксплуатационных скважин при применении способа принудительного смещения нефтяной оторочки должно производиться с учетом физико-геологических особенностей залежи. Во-первых, нужно иметь в виду то обстоятельство, что при высокой насыщенности пласта погребенной нефтью нефтеотдача будет возрастать с увеличением пути перемещения оторочки, а при низкой — снижаться. Во-вторых, нужно учитывать, что газ вытесняется углеводородными жидкостями значительно более полно, чем водой. Этот факт установлен рядом исследователей и подтверждается нашими экспериментами. Это означает, что при принудительном смещении оторочек в период поддержания давления может быть получена более высокая газоотдача и конденсатоотдача, чем при барьерном заводнении. Естественно, что полнота извлечения конденсата должна возрастать с увеличением пути перемещения оторочки. На основании таких характеристик залежи, как насыщенность пласта погребенной нефтью, потенциальное содержание конденсата в газе, запасы газа, конденсата и нефти, размеры газоконденсатной и нефтяной зон, величина ретроградных потерь конденсата при снижении давления и т. д., в каждом отдельном случае можно определить оптимальный масштаб смещения оторочки с целью максимального использования общих запасов залежи. В соответствии с этим и должно производиться размещение эксплуатационных скважин по залежи, устанавливаться темпы закачки воды и отборов нефти.
Частичное смещение оторочки в газоконденсатную шапку может оказаться целесообразным и в случаях узких оторочек. Такие оторочки могут иметь большой этаж нефтеносности и сосредоточивать значительные запасы нефти. Обычно их разбуривание представляет значительные трудности. Следствием этого является неравномерность дренирования нефтяной зоны, что приводит к дополнительным потерям нефти в пласте. Регулируемое смещение оторочек устраняет необходимость точной проводки скважин: они могут быть пробурены вблизи газонефтяного контакта и вводятся в эксплуатацию по мере прорыва в них нефти.