Смекни!
smekni.com

Анализ ремонтно-изоляционных работ в условиях УПНП и КРС (стр. 2 из 17)

Поскольку в настоящее время разработка площади осуществляется с учетом выделенных блоков, то обобщены результаты определения толщин, емкостно-фильтрационных свойств, насыщенности, а также оценка изменчивости этих параметров. В целом продуктивные отложения горизонта Д1 по блокам не отличаются, по рассмотренным параметрам, за исключением того, что средняя проницаемость коллекторов второго блока составляет 0,492 мкм2 , а первого и третьего 0,387 и 0,379 мкм2 соответственно. Это, видимо объясняется различным объемом выработки по представительности групп пород.

Следует также отметить увеличение фильтрационных свойств коллекторов сверху вниз. Опять же это связано, видимо, с вышеуказанными причинами. Очевидно, что сравнение тех же параметров между группами коллекторов не имеет смысла. Целесообразнее их рассматривать в пределах групп коллекторов при сравнении пластов между собой.

Так средняя толщина пластов, представленных высокопродуктивными неглинистыми коллекторами изменяется от 2,6 по пласту " б1 " до 3,8м. по пласту " б3 ". При этом параметр изменчивости средних величин составляет 0,43 – 0,53. Средние значения пористости и нефтенасыщенности по пласту отличаются незначительно. Следует акцентировать внимание на существенном отличии пластов по фильтрационным свойствам. Из приведенных данных видно: проницаемость пласта " г1 " составляет 0,666 мкм2, а пласта " б3 " – 0,939 мкм2, при среднем значении проницаемости этой группы пород равной 0,76 мкм2.

Коллекторские свойства глинистых высокопродуктивных и малопродуктивных пластов более однородные, чем в вышеописанной группе. Абсолютные значения параметров пористости, нефтенасыщенности, а также толщин пластов в пределах групп отличаются в меньшей степени, чем между группами. Группы коллекторов, включая и ранее рассмотренную существенно отличаются по фильтрационным свойствам. В пределах высокопродуктивных коллекторов пласты с глинистостью менее 2% в 2 раза выше пластов с глинистостью более 2%. Проницаемость малопродуктивных коллекторов в 5 раз меньше глинистых.

Таким образом, проведенное геологическое обоснование показало, что высокопродуктивные неглинистые коллекторы верхней пачки пластов в лучшей степени развиты на втором блоке. Категория глинистых высокопродуктивных превалирует на третьем блоке. Из числа пластов нижней пачки пласт " г2 " отличается наибольшей представительностью неглинистых высокопродуктивных коллекторов, которые, например, на первом блоке составляют 92% площади.

Доля глинистых высокопродуктивных коллекторов незначительная и максимальная величина (7%) прослеживается по пласту " в ". Малопродуктивные коллекторы в большей мере присутствуют в третьем блоке.

Продуктивные пласты в рамках выделенных групп мало чем отличаются по коллекторским свойствам, а также по толщине, что позволяет при анализе выработки запасов нефти по пласту поставить их в равные условия.

2.3 Физико-химические свойства горных пород

Изучение физико-химических свойств пластовых и дегазированных нефтей и попутных газов проводилось в институте "ТатНИПИнефть" и в лабораториях НГДУ "Лениногорскнефть". Пластовые нефти исследовались на установках УИПН-2М и АСМ-30; газ, выделенный из нефти при разгазировании, анализировался на аппаратах ХЛ-3, ХЛ-4, ЛХМ-8МД. Поверхностные нефти исследовались по существующим ГОСТам. Нефть продуктивного горизонта относится к группе малосернистых. Результаты исследований и компонентный состав газа при дифференциальном разгазировании приведены на следующей странице.

Свойства пластовой нефти

Давление насыщения газом, МПа 4,8-9,3

Газосодержание , % 52,2-66,2

Суммарный газовый фактор, 50,0

Плотность, кг / м3 768,0-818,0

Вязкость, мПа с 2,4-10,4

Объемный коэффициент при

дифференциальном разгазировании 1,128-1,196

Плотность дегазированной нефти, кг/ м3 795,0-879,0

Компонентный состав газа

Азот + редкие

В т.ч. гелий, % 10,36

Метан, % 39,64

Этан, % 22,28

Пропан, % 18,93

Изобутан, % 1,74

Н. Бутан, % 4,36

Изопентан, % 0,67

Н. Пентан, % 0,65

Гексан, % 0,46

Сероводород, % 0,02

Углекислый газ, % 0,89

Плотность газа, кг\м3 1,2398

Пластовые воды по своему химическому составу рассолы хлор – кальциевого типа с общей минерализацией 252 – 280 г / л, в среднем 270 г /л. в ионно – солевом составе преобладают хлориды (в среднем 168г / л ) и натрий ( 70,8 г / л ). Плотность воды в среднем 1,186 г\см3 , вязкость 1,9 мПа×с. В естественных, не нарушенных закачкой воды условиях в подземных водах терригенного девона сероводород отсутствует. Газонасыщенность подземных вод 0,248 – 0,368 м3/ м3, снижается по мере удаления от нефтяных залежей. В составе растворенного в воде газа преобладает метан.

2.4 Режим залежи

Энергетическое состояние залежи – главный фактор, ограничивающий темпы ее разработки и полноту извлечения нефти и газа. Поэтому для характеристики преобладающей в процессе разработки формы пластовой энергии введено понятие режима работы залежи.

Эксплуатация Западно-Лениногорской площади производится в водонапорном и упруговодонапорном режиме.

В условиях водонапорного режима основной движущей силой служит напор краевых вод и подошвенных вод. Водонапорный режим проявляется тогда, когда законтурная водоносная область месторождения связана с земной поверхностью и постоянно пополняется дождевыми и талыми водами.

Место выхода пласта на поверхность или пополнение его водой называется областью или контуром питания. Область питания может находиться на расстоянии сотен километров от нефтенасыщенной части пласта. Постоянное пополнение водоносной части пласта через область питания обеспечивает постоянство приведенного пластового давления на контуре питания, при хорошей его гидродинамической связи с нефтенасыщенной частью это создаст наиболее благоприятные условия для разработки залежи. Отбор нефти в начальный период разработки залежи приводит к некоторому снижению пластового давления в нефтеносной части пласта.

Возникшая разница давлений на контуре питания и в зоне отбора вызывает движение воды, поступление которой в нефтеносную часть стабилизирует в ней давление. Оно устанавливается на таком уровне, когда приток воды полностью компенсирует отбор жидкости из залежи. Упругие изменения породы и жидкости при уменьшении давления в пласте, отнесенные к единице объема, незначительны. Но если учесть, что объемы залежи и питающей ее водонапорной системы могут быть огромны, то упругая энергия пород жидкостей и газов может оказаться существенным фактором, обуславливающим движение нефти к забоям нефтяных скважин.

Чем больше площадь, на которую распространяется понижение давления, тем большие массы жидкости вовлекаются в упругое перемещение по направлению к скважинам. Зона депрессии, образовавшаяся вначале непосредственной близости к забоям скважин, постоянно распространяется на всю залежь и ее пределы, вызывая упругое расширение все новых масс жидкости — сначала нефти, потом воды, вытесняющей и замещающей нефть.

Основным признаком упруговодонапорного режима является значительное падение пластового давления в начальный период эксплуатации. В дальнейшем, при постоянном отборе жидкости темп падения замедляется. Это объясняется тем, что зона понижения давления со временем охватывает все большие площади пласта, и для обеспечения одного и того же притока жидкости, достаточно падения давления на меньшую величину, чем в начальный период.

2.5 Конструкция скважины

Конструкция скважин должна обеспечить:

-доведение скважины до проектной глубины;

-осуществление заданных способов вскрытия продуктивных горизонтов и эксплуатации скважины;

-предотвращение осложнении в процессе бурения и полное использование потенциальных возможностей техники и технологических процессов при эксплуатации;

-минимум затрат на строительство скважин, а также необходимых дополнительных объектов и сооружении в целом.

Рекомендуется следующая конструкция скважины: направление, кондуктор, и эксплуатационная колонна. В целях перекрытия верхних неустойчивых пород, для предотвращения размыва устья скважины, а также для разделения питьевых вод спускается направление, цементируется до устья качественным портландцементом тампонажным. Для предотвращения осложнений и аварий в скважине, при дальнейшем бурении под эксплуатационную колонну, спускается подвесной извлекаемый кондуктор. Непроницаемые разделы между водоносными пластами за кондуктором подлежат цементированию. На всех скважинах цемент за кондуктором должен быть поднят до устья. Для цементирования направления и кондуктора рекомендуется использовать портландцемент тампонажный ПЦТ-ДО-50, ПЦТ-ДО-100.

В санитарно-защитных зонах и зонах строго контроля питьевых источников в конструкцию скважины рекомендуется включить промежуточный кондуктор, который цементируется до устья.

Эксплуатационная колонна предназначена для перекрытия продуктивного горизонта и разобщения вышерасположенных пород разреза, а также для обеспечения транспортирования скважинных и закачиваемых жидкостей. Решение о глубине спуска эксплуатационной колонны принимать лишь после вскрытия продуктивных пластов и проведения геофизических работ в связи с возможным наличием обвалов или отсутствием продуктивных пластов.

С целью уменьшения негативных последствии тампонажного раствора и высокой репрессии выше открытого ствола над башмаком эксплуатационной колонны необходимо установить ПДМ( пакер двухступенчатого и манежного цементирования), либо другое устройство, позволяющее герметично разобщить открытый ствол от тампонажного раствора и репрессии, в период крепления скважины.