Смекни!
smekni.com

Разнообразие кристаллографических форм (стр. 2 из 9)


1.3.1 Простые формы низшей категории

Таблица 1

Определение простых форм низшей категории

№п/п Кол-вограней Взаимное расположение граней Названия простых форм
1234567 1224448 -ПараллельныПересекаютсяПересекаются в параллельных ребрах, в сечении ромбПересекаются в одной точке,в сечении ромбПересекаются в 4-х точках по три, грань- косоугольный треугольникПересекаются в 2-х точках с общим ромбическим сечением моноэдрпинакоиддиэдрпризма ромбическаяпирамида ромбическаятетраэдр ромбическийдипирамида ромбическая

В низшей категории насчитывается 7 простых форм - из них 5 открытых и 2 замкнутые - тетраэдр и дипирамида ромбическая (табл.1, рис.1).


Рис.1 Простые формы кристаллов низшей категории:

1 - моноэдр; 2 - пинакоид; 3 - диэдр; 4 - ромбическая призма;

5 - ромбический тетраэдр; 6 - ромбическая пирамида; 7 - ромбическая

дипирамида

1.3.2Простые формы средней категории

Из низшей категории в среднюю категорию переходят две простые формы: моноэдр и пинакоид. Они переходят как частные формы, т.е. перпендикулярные главной оси. Другие формы - 6 призм, 6 пирамид, 6 дипирамид, 3 трапецоэдра, 2 скаленоэдра, тетраэдр, ромбоэдр. Своих форм в средней категории - 25, и две переходящие из низшей категории (табл. 2, рис.2).

К открытым формам относятся призмы и пирамиды. чтобы образовать из них замкнутые многогранники, требуется моноэдр или пинакоид.

Остальные формы - трапецоэдры, скаленоэдры, тетраэдр и ромбоэдр - являются замкнутыми и переменными.

Таблица 2

Определение простых форм средней категории

Пересечениес главнойосью Расположение гранейотносительно главнойоси Названия простых форм

Кол-во

граней
не пересекаютглавную ось Параллельныеглавной оси
тригональная тетрагональная гексагональнаядитригональнаядитетрагональнаядигексагональная
3466812
пересекаютглавную ось Пересекаютглавную ось

Пересекают главнуюось в одной точке
моноэдрпинакоид

тригональная

тетрагональная

гексагональная

дитригональная

дитетрагональная

дигексагональная

1

2


3

4

6

6

8

12

пересекают главную ось в 2-х точках

А. Нижние грани

точно под верхними


Б. Нижние грани

несимметричны

верхним


В. Нижняя грань

симметрична двум верхним


Г. Нижняя пара граней

симметрична двум парам верхних

тригональная

тетрагональная

гексагональная

дитригональная

дитетрагональная

дигексагональная


тригональный

тетрагональный

гексагональный

тетраэдр

ромбоэдр


тетрагональный

дитригональный

6

8

12

12

16

24

6

8

12

4

6

8

12


Рис. 2. Простые формы кристаллов средней категории:

1–6 пирамиды: 1–тригональная, 2–дитригональная, 3–тетрагональная,

4–дитетрагональная, 5–гексагональная, 6–дигексагональная;

7–12 дипирамиды: 7–тригональная, 8–дитригональная, 9–тетрагональная, 10–дитетрагональная, 11–гексагональная, 12–дигексагональная;

13–25 призмы; 13–тригональная, 14–дитригональная, 15–тетрагональная, 16–дитетрагональная, 17–гексагональная, 18–дигексагональная, 19–тригональный трапецоэдр, 20–тетраэдр, 21–тетрагональный трапецоэдр, 22–ромбоэдр, 23–гексагональный трапецоэдр, 24–тетрагональный скаленоэдр, 25–тригональный скаленоэдр


1.3.3Простые формы высшей категории

В высшей категории - кубической сингонии насчитывается 15 простых форм (табл.3, рис. 3). Ни одна простая форма из низшей и средней категорий не переходит в высшую. Некоторое исключение составляет тетраэдр. В низшей категории его грани косоугольные треугольники, в средней категории - равнобедренные треугольники, в высшей категории - равносторонние треугольники.

Таблица 3

Определение простых форм высшей категории

№п/п Названия простых форм Кол-вограней Форма граней
123.456789101112131415
Тетраэдр

Тригонтритетраэдр

Тетрагонтритетраэдр

Пентагонтритетраэдр

Тригонгексатетраэдр

Гексаэдр

Тригонтетрагексаэдр

Октаэдр

Тригонтриоктаэдр

ТетрагонтриоктаэдрПентагонтриоктаэдрТригонгексаоктаэдр
Ромбододекаэдр

Пентагондодекаэдр

Дидодекаэдр

4121212246

24

8

24

24

24

48

12

12

24


Примечание. Все формы замкнутые. Постоянные формы подчеркнуты, остальные переменные.

Рис.3Простые формы кристаллов высшей категории:

1–тетраэдр; 2–тригонтритетраэдр; 3–тетрагонтритетраэдр; 4–пентагонтритетраэдр; 5–гексатетраэдр; 6–октаэдр; 7–тригонтриоктаэдр; 8–тетрагонтриоктаэдр; 9–пентагонтриоктаэдр; 10–гексагонтриоктаэдр; 11–гексаэдр; 12–тригонтетрагексаэдр; 13–ромбододекаэдр; 14–пентагондодека- эдр; 15–дидодекаэдр


Комбинационной формой - называется такая, которая состоит из 2-х и более простых форм. Действительно, одной плоскостью не ограничить многогранник, двумя и тремя также. Лишь четырьмя плоскостями можно ограничить пространство и получить четырехгранник - тетраэдр. Открытые формы - призмы и пирамиды - также нуждаются в дополнительных плоскостях, чтобы получился многогранник. В замкнутых формах нет такой необходимости.

1.4Установка кристаллов

Установка кристалла - это выбор координатных или кристаллографических осей. В отличие от кристаллофизической системы координат, которая является прямоугольной, кристаллографическая система подчинена внутренней структуре кристалла. Поэтому, в общем виде, она является косоугольной, а в тригональной и гексагональной сингонии принята даже четырехосная система (табл. 4).

При установке кристаллов следует руководствоваться следующими условиями:

· координатные оси можно совмещать с осями симметрии L2, L3, L4, L6, Li4, Li6;

· координатные оси можно совмещать, когда нет или мало осей симметрии, с нормалями к плоскостям симметрии;

· координатные оси при отсутствии элементов симметрии или их недостаточном количестве, а это характерно для триклинной и моноклинной сингонии, можно совмещать с осями наиболее развитых зон или, что то же самое, параллельно ребрам кристаллов.

При установке кристаллов в низшей категории удлинение кристаллов необходимо направлять по III кристаллографической оси.

В ТРИКЛИННОЙ СИНГОНИИ координатные оси совмещаются с осями наиболее развитых зон.

В МОНОКЛИННОЙ СИНГОНИИ единственный элемент симметрии совмещается со второй кристаллографической осью, остальные - по осям наиболее развитых зон. Ось III ориентируется по удлинению кристалла и по оси развитой зоны.