Ламінарний режим характеризується шаруватою течією рідини без перемішування окремих її шарів і без пульсацій швидкості і тиску. Ламінарний режим може установлюватися в капілярних трубках при малих швидкостях руху води, а також при русі рідин з великою в’язкістю (нафта, масла, гліцерин тощо).
При турбулентному режимі течія рідини супроводжується інтенсивним перемішуванням окремих її частинок і пульсаціями швидкостей і тиску. Цей режим характерний при русі води в системах водопостачання і інших рідин при відносно великих швидкостях руху.
Рейнольдс встановив, що критерієм режиму руху рідини є безрозмірна величина, яка являє собою відношення добутку швидкості потоку на характерний лінійний розмір до коефіцієнта кінематичної в’язкості рідини. Цю величину пізніше було названо числом (критерієм) Рейнольдса і позначено через Re. Для потоків рідини в трубах круглого поперечного перерізу число Рейнольдса підраховують за формулою:
| (3.21) |
де d – геометричний діаметр труби.
Значення числа Рейнольдса, яке відповідає переходу від ламінарного режиму течії в турбулентний і навпаки, називають критичним. Для труб круглого перерізу:
| (3.22) |
тут υкр – середня критична швидкість руху рідини.
Таким чином, якщо
|
то режим руху ламінарний; при
Для каналів з довільною формою поперечного перерізу критерій Рейнольдса визначають за формулою:
| (3.23) |
в якій
Математично можна довести, що епюра швидкостей в поперечному перерізі труби при ламінарній течії рідини є квадратичною параболою, рівняння якої згідно з рис.3.7 має вигляд:
| (3.24) |
В цьому рівнянні:
Рис.3.7
Очевидно, що максимальна швидкість потоку буде при у=0, тобто на осі труби; величина її визначається формулою:
| (3.25) |
де d – діаметр труби.
Середня швидкість рідини виявляється вдвічі меншою за максимальну:
| (3.26) |
Втрати напору (енергії) на тертя знаходяться за формулою Пуайзеля, яка виходить зі співвідношення (3.26):
| (3.27) |
В останньому рівнянні
Якщо гідравлічні втрати виразити не в одиницях тиску, а в лінійній розмірності, то отримаємо такі залежності:
| (3.28) |
або
| (3.29) |
Закон Пуайзеля можна привести до вигляду формули Дарсі-Вейсбаха (3.18). Для цього помножимо і поділимо праву частину рівняння (3.27) на середню швидкість υ. Після деяких перетворень кінцево отримаємо:
|
Прирівняємо втрати напору по довжині, визначенні за формулами (3.19) і (3.29):
|
Звідсіля гідравлічний коефіцієнт тертя при ламінарному режимі
| (3.30) |
В загальному випадку ламінарної течії:
| (3.31) |
Місцеві опори в трубопроводах при ламінарному режимі течії рідини значно менші порівняно з опором сил гідравлічного тертя; до того ж закономірності їх зміни мало досліджені. Тому місцеві опори враховують як частку лінійних втрат через еквівалентну довжину трубопроводу.
Механізм турбулентного потоку значно складніший порівняно з ламінарною течією рідини. При турбулентному режимі частинки рідини безладно перемішуються між собою, а швидкості в будь-якій точці потоку безперервно змінюються за величиною та напрямом.
Для спрощення гідравлічних розрахунків турбулентного потоку вводять поняття осередненої місцевої швидкості, яка, незважаючи на значні коливання миттєвих швидкостей, залишається практично незмінною і паралельною осі потоку. Така заміна робить можливим використання рівняння Бернуллі і для турбулентного потоку рідини.
Рис.3.8
Експериментальні дослідження показують (Прандтль, Нікурадзе), що турбулентний потік в трубах поділяється на дві, різко відмінні частини. Безпосередньо у стінки труби утворюється дуже тонкий шар рідини
Поверхні стінок труб, каналів не бувають абсолютно гладкими, а мають ту чи іншу шорсткість. Висоту виступів шорсткості позначають літерою
З метою спрощення розрахунків користуються поняттям еквівалентної шорсткості
В залежності від співвідношення товщини ламінарного підшарка
Для того, щоб можна було розрахувати за формулою Дарсі-Вейсбаха (3.19) втрати напору (енергії) по довжині потоку, необхідно знати коефіцієнт гідравлічного тертя
На основі аналіза результатів великої кількості експериментальних досліджень (І. Нікурадзе, Кольбрук, Ф. Шевелєв та інші) було виявлено, що в залежності від величини числа Рейнольдса всю зону турбулентного режиму руху можна поділити на три області.