Можно отметить следующие причины такого положения:
1) не всегда при проектировании имеется или используется вся имеющаяся геолого-геофизическая информация;
2) полученная в процессе бурения и исследования скважин геофизическая информация не всегда позволяет достоверно установить положение ствола ГС в толще неоднородных пород;
3) не учитывается особенности интерпретации геофизических материалов по горизонтальным скважинам, она выполняется формально, с использованием традиционных методик, принятых для вертикальных скважин. Даже ограниченный объем информации, получаемый комплексами «Горизонт», «Горизонталь», «Жесткий кабель», оптимально не используется.
Практика горизонтального бурения показала, что ожидаемые высокие дебиты не всегда подтверждаются. Таким образом, для получения эффекта от ГС и для его прогнозирования необходимо увеличение информации, т.е. детальное знание геологической и гидродинамической обстановки, включая геологическое строение месторождения, закономерности изменения свойств коллекторов и физико-химические свойства нефти. На дебит ГС влияют различные факторы, в том числе ее длина и положение ствола относительно границ платов на профильных геологических разрезах. Известно, что часто не вся длина горизонтальной скважины используется эффективно, жидкость в скважину поступает лишь через проницаемые участки пласта. В общем случае для осадочных пород характерна плоскопараллельная текстура (горизонтальная слоистость), для карбонатных отложений возможна неоднородность и в горизонтальном направлении. Анализ влияния различных видов неоднородности на дебит ГС возможен лишь по результатам совместной интерпретации данных геофизических исследований и сведений, полученных по соседним вертикальным скважинам.
Таким образом, кроме длины, на дебит ГС влияют положение ее ствола в разрезе залежи, расчлененность разреза, макро- и микрослоистость и анизотропия пород, наличие гидродинамической связи между пропластками.
При интерпретации в первую очередь необходимо установить реальное пространственное положение ствола скважины, так как оно может существенно отличаться от проектного. Во-вторых, в процессе интерпретации необходимо учесть геологические параметры вскрытых пластов вблизи ГС, а в благоприятных случаях – по всему разрезу залежи.
Дебитомер
Из-за большой протяженности горизонтальных стволов в продуктивных пластах (200-300м и более) на фоне обычно небольшого увеличения дебитов нефти (в 1,5-2 раза) относительно вертикальных скважин удельный дебит в ГС гораздо ниже порога чувствительности существующей потометрической аппаратуры. Весьма актуальной становится разработка дебитомеров для определения работающих интервалов, поинтервальных дебитов, выявления зон обводнения в условиях ГС.
К настоящему времени разработан обширный ряд многопараметровой и компьютеризированной аппаратуры на базе механических (МП) и термокондуктивных (ТП) преобразователей притока.
МП позволяют измерять непосредственно действующие характеристики притока. В качестве чувствительных МП используют динамические вертушки, поплавково-пружинные устройства и поворотные турбинки на струнной подвеске. Скважинные приборы, в которых используется МП, делятся на беспакерные и пакерные.
Беспакерные дебитомеры (расходомеры) применяются обычно в высокодебитных скважинах. Пакерные приборы более сложные, зато позволяют измерять расходы с большей точностью, чем беспакерные.
Для характеристики лишь интенсивности измеряемых величин используются ТП. Они имеют большой диапазон индикации дебита, некритичны к механическим примесям в потоке.
Комбинирование МП и ТП в одном комплексном приборе позволяет, в принципе, учитывать различные негативные факторы, расширить область применения аппаратуры.
Заключение